Content Knowledge: Michigan

Early Childhood Preparation Policy

Goal

The state should require its teacher preparation programs to provide early childhood teachers with age-appropriate content knowledge and instructional strategies. Starting in 2020, this goal is now graded.

Meets
Suggested Citation:
National Council on Teacher Quality. (2020). Content Knowledge: Michigan results. State Teacher Policy Database. [Data set].
Retrieved from: https://www.nctq.org/yearbook/state/MI-Content-Knowledge-87

Analysis of Michigan's policies

Beginning Fall 2021, Michigan will offer two grade-span licenses that allow teachers to teach early childhood grades: pre-K-3 and birth to kindergarten. The preparation standards for these licenses have been approved.

Emergent Literacy and Oral Language:
Michigan's standards for pre-K-3 include emergent literacy and oral language. They require beginning teachers to:

  • Facilitate children's access to a range of developmentally appropriate contemporary and classical digital and print materials of a variety of genres and media for both in and out of school literacy.
  • Observe and describe the impact of language on children's social and academic development and emerging identities as readers and writers, and plan and implement instruction accordingly.
  • Demonstrate knowledge and understanding of state standards and competencies applicable to literacy learning PK-3. 
  • Identify reasonable goals and expectations for children that align with their literacy development. 
Michigan's standards for birth to kindergarten also include emergent literacy and oral language. They require beginning teachers to:
  • Facilitate children's access to and exploration of a range of developmentally appropriate and accessible print materials from a variety of genres (e.g., informative/explanatory texts, narrative texts, signage including environmental print, social stories, poetry) and media (e.g., books, magazines, digital texts, and audio texts) for home and early childhood settings.
  • For children older than 2 years of age, support and guide integration of digital technologies to aid children's literacy and learning across disciplines (e.g., playing music, opportunities to use and create digital artifacts of learning, interactive simulations, digital/audio stories, or informational texts, digital presentations).
  • Use a range of digital and non-digital tools to support dramatic play for socialization, oral language, writing development, word study, vocabulary, fluency, and comprehension.
Emergent Mathematics and Science: Michigan's standards for pre-K-3 include emergent math and science. They require beginning teachers to:
  • Consider who children are as learners of mathematics and design ways to interest children and to use their resources and affinities to build access and participation, including taking stock of the mathematical capacities children bring to lessons, anticipating common patterns of mathematical thinking, looking for opportunities to include play in mathematics and mathematics in play, and planning for the mathematical participation of particular children. (math)
  • Identify mathematical affordances in tasks and play situations for counting objects and exploring early number concepts (i.e., cardinality, one-to-one correspondence, subitizing, hierarchical inclusion, and conservation, as well as counting on and counting back). (math)
  • Identify grade appropriate elements of scientific and engineering practices, including developing and using models and engaging in argument from evidence. (science)
  • Choose, modify and/or design lessons and lesson sequences and/or assessments to create learning environments that provide opportunities for iterative children's sense-making and explanation building through classroom talk, written words, diagrams and/or movement. (science)
Similar math and science standards are articulated in Michigan's standards for birth to kindergarten teachers.

Early Childhood Development: Michigan's standards for both pre-K-3 and birth to kindergarten teachers include early childhood development. They require beginning teachers to:
  • Support the whole child through knowledge and understanding of young children's characteristics and needs, including multiple interrelated areas of child development and learning, learning processes, and motivation to learn.
Establishing a Positive and Productive Classroom Environment: Michigan's standards for both pre-K-3 and birth to kindergarten include establishing a positive and productive classroom environment. They require beginning teachers to:
  • Implement norms and routines and use classroom management strategies support individual and group motivation and behavior among children to generate active engagement in play and learning, self-motivation, and positive social interaction, and to create supportive and dynamic indoor and outdoor learning environments.

Citation

Recommendations for Michigan

Due to Michigan's strong policies in this area, no recommendations are provided.

State response to our analysis

Michigan was helpful in providing NCTQ with the facts necessary for this analysis.

Updated: February 2020

How we graded

The factors considered in determining the states' rating for the goal:

  1. The state should ensure that all new teacher candidates possess sufficient knowledge of emergent literacy and oral language.
  2. The state should ensure that all new teacher candidates possess sufficient knowledge of emergent mathematics and science concepts.
  3. The state should ensure that all new teacher candidates possess content knowledge of early childhood development in the birth to age eight range.
  4. The state should ensure that all new teacher candidates possess content knowledge of strategies and concepts that create a positive and productive classroom environment. Such as: classroom management techniques, building social and emotional skills, developing a child's executive functions, and learning through play.

Content Knowledge: The state should require all early childhood teacher candidates to possess sufficient knowledge of: emergent literacy, oral language, emergent mathematics and science; childhood development from birth through age eight. The state should also require all early childhood teacher candidates to possess sufficient knowledge of strategies and concepts that create a positive and productive classroom environment, such as: classroom management techniques, building social and emotional skills, developing a child's executive functions, and learning through play.


Content Knowledge: Emergent Literacy and oral language
One-quarter of the total goal score is earned based on the following:
  • One-quarter Credit:
    The state will earn one-quarter of a point if it requires
    that all new teacher candidates possess sufficient knowledge of emergent literacy and oral language
Content Knowledge: Emergent mathematics and science
One-quarter of the total goal score is earned based on the following:
  • One-quarter Credit:
    The state will earn one-quarter of a point if it requires
    that all new teacher candidates possess sufficient knowledge of emergent mathematics and science concepts.
Content Knowledge: Early Childhood Development (birth through age 8)
One-quarter of the total goal score is earned based on the following:
  • One-quarter Credit:
    The state will earn one-quarter of a point if it requires
    that all new teacher candidates possess content knowledge of early childhood development in the birth to age eight range.
Content Knowledge: Positive and Productive Classroom environment
One-quarter of the total goal score is earned based on the following:
  • One-quarter Credit: The state will earn one-quarter of a point if it requires that all new teacher candidates possess content knowledge of strategies and concepts that create a positive and productive classroom environment. Such as: classroom management techniques, building social and emotional skills, developing a child's executive functions, and learning through play. State can get credit for addressing any one of the concepts listed.

Research rationale

A strong preschool experience can set children up for achievement gains in elementary school,[1] and even more critically, for improved long-term outcomes including college attendance and degree completion.[2] However, not all preschool programs have achieved these positive results.[3] To increase the likelihood that children will reap benefits from attending preschool, states should ensure that the preschool teachers have certain essential skills and knowledge.

To lay children's foundation for learning to read—and to open the door to other areas of learning—teachers must understand how to develop children's oral language skills and build children's emergent literacy. Especially for young children who are already behind, preschool teachers can play a critical role in language development.[4] Emergent literacy encompasses a range of skills that are essential to reading, but may not come naturally to all children. These skills include phonological awareness, phonemic awareness, learning the alphabet, and concepts of print.[5] Teacher training in these areas can translate into substantial gains for children in alphabet knowledge, vocabulary, and language skills.[6] The early introduction of language and literacy can make a lasting difference for children. Unsurprisingly, children with low language and literacy skills in preschool demonstrate lower reading skills in kindergarten.[7] However, not all approaches to teaching emergent literacy are equally effective, and the quality of preschool curricula varies, making it that much more important that preschool teachers have ample training in how to develop their preschoolers' emergent literacy skills.[8]

Preschool teachers need similar grounding in teaching emergent math and science concepts. Research finds that introducing children to more complex mathematical concepts from an early age may increase their math ability in later years.[9] In fact, some research suggests that the relationship between children's early math skills and future math achievement is twice as strong as the relationship between emergent literacy and future reading achievement.[10] Little research exists on what teachers need to know about preschool science instruction, but experts agree that this area is important.[11]

Beyond knowing what to teach, preschool teachers need to understand the children they are teaching. As such, knowledge of child development from birth to age eight is important.[12] Similarly, preschool teachers need to know effective classroom management strategies that can build social-emotional skills and prevent or resolve many behavioral problems.[13] Of course, classroom management is about more than discipline: it is about establishing an environment that actively supports learning, including understanding how to develop children's executive functioning skills and manage children's play for learning purposes.[14] Teachers' emotional support for their students is associated with better social competence and lower rates of behavior problems.[15]


[1] For example, see: Andrews, R. J., Jargowsky, P., & Kuhne, K. (2012). The effects of Texas's targeted pre-kindergarten program on academic performance (Working paper no. 84). CALDER. Retrieved from http://www.nber.org/papers/w18598; Campbell, F. A., Pungello, E. P., Miller-Johnson, S., Burchinal, M., & Ramey, C. T. (2001). The development of cognitive and academic abilities: Growth curves from an early childhood educational experiment. Developmental Psychology, 37, 231-242; Ramey, C. T., Campbell, F. A., Burchinal, M., Skinner, M. L., Gardner, D. M., & Ramey, S. L. (2000). Persistent effects of early intervention on high-risk children and their mothers. Applied Developmental Science, 4, 2-14; Ramey, C. T. & Campbell, F. A. (1991). Poverty, early childhood education, and academic competence: The Abecedarian experiment. In A. Huston (Ed.), Children reared in poverty (pp. 190-221). New York: Cambridge University Press; Ramey, C. T., & Campbell, F. A. (1984). Preventive education for high-risk children: Cognitive consequences of the Carolina Abecedarian Project. American Journal of Mental Deficiency, 88, 515-523.
[2] Schweinhart, L. J., Montie, J., Xiang, Z., Barnett, W. S., Belfield, C. R., & Nores, M. (2005). Lifetime effects: The HighScope Perry Preschool study through age 40. Ypsilanti, MI: HighScope Press; Campbell, F., Conti, G., Heckman, J.J., Moon, S.H., Pinto, R., Pungello, E., Pan, Y. (2014, March 28) Early childhood investments substantially boost adult health. Science, 343(6178):1478-85. DOI: 10.1126/1248429. PMID: 24675955; Campbell, F. A., Pungello, E. P., Burchinal, M., Kainz, K., Pan, Y., Wasik, B. H., Sparling, J. & Ramey, C. T. (2012). Adult outcomes as a function of an early childhood educational program: An Abecedarian Project follow-up. Developmental Psychology, 48, 1033. Campbell, F. A., Wasik, B. H., Pungello, E. P., Burchinal, M. R., Kainz, K., Barbarin, O., ... & Ramey, C. T. (2008). Young adult outcomes from the Abecedarian and CARE early childhood educational interventions. Early Childhood Research Quarterly, 23, 452-466. Campbell, F. A., Ramey, C. T., Pungello, E. P., Sparling, J., & Miller-Johnson, S. (2002). Early childhood education: Young adult outcomes from the Abecedarian Project. Applied Developmental Science, 6, 42-57. Dynarski, S., Hyman, J., & Schanzenbach, D. W. (2013). Experimental evidence on the effect of childhood investments on postsecondary attainment and degree completion. Journal of Policy Analysis and Management, 32, 692-717. Chetty, R., Friedman, J. N., Hilger, N., Saez, E., Schanzenbach, D. W., & Yagan, D. (2010). How does your kindergarten classroom affect your earnings? Evidence from Project STAR. Cambridge, MA: National Bureau of Economic Research. Retrieved from http://www.nber.org/papers/w16381
[3] Lipsey, M. W., Farran, D. C., & Hofer, K. G., (2015). A randomized control trial of the effects of a statewide voluntary prekindergarten program on children's skills and behaviors through third grade. Nashville, TN: Vanderbilt University, Peabody Research Institute. Retrieved from http://peabody.vanderbilt.edu/research/pri/VPKthrough3rd_final_withcover.pdf
[4] Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research; Beck, I. L., & McKeown, M. G. (2007). Increasing young low‐income children's oral vocabulary repertoires through rich and focused instruction. The Elementary School Journal, 107(3), 251-271; Institute of Medicine & National Research Council. (2015). Transforming the workforce for children birth through age 8: A unifying foundation. Washington, DC: The National Academies Press; M. Adams, personal communication, January 2016; Dickinson, D. K., & Porche, M. V. (2011). Relation between language experiences in preschool classrooms and children's kindergarten and fourth‐grade language and reading abilities. Child Development, 82(3), 870-88.
[5] U.S. Department of Education, Institute of Education Sciences, What Works Clearinghouse. (2012). Early childhood education interventions for children with disabilities intervention report: Phonological awareness training. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/InterventionReports/wwc_pat_060512.pdf; Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.
[6] Landry, S. H., Swank, P. R., Smith, K. E., Assel, M. A., & Gunnewig, S. B. (2006). Enhancing early literacy skills for preschool children bringing a professional development model to scale. Journal of Learning Disabilities, 39(4), 306-324.; U.S. Department of Education, Institute of Education Sciences, What Works Clearinghouse. (2012). Early childhood education interventions for children with disabilities intervention report: Phonological awareness training. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/InterventionReports/wwc_pat_060512.pdf
[7] Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.
[8] Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.
[9] Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What's past is prologue: Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43(7), 352-360.
[10] Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.; Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., ... & Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428-1446; Other research found that children's math ability in preschool predicted their math ability at age 15, even after controlling for early reading ability and family characteristics. See: Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What's past is prologue: Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43(7), 352-360.
[11] Putman, H., Moorer, A., & Walsh, K. (2016). Some assembly required: Piecing together the preparation preschool teachers need. Washington, DC: National Council on Teacher Quality. Retrieved from: http://www.nctq.org/dmsStage/Preschool
[12] Putman, H., Moorer, A., & Walsh, K. (2016). Some assembly required: Piecing together the preparation preschool teachers need. Washington, DC: National Council on Teacher Quality. Retrieved from: http://www.nctq.org/dmsStage/Preschool
[13]  Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.; Epstein, M., Atkins, M., Cullinan, D., Kutash, K., and Weaver, R. (2008). Reducing behavior problems in the elementary school classroom: A practice guide (NCEE 2008-012). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/behavior_pg_092308.pdf; National Association for the Education of Young Children. (2010). 2010 NAEYC standards for initial and advanced early childhood professional preparation programs. Retrieved from http://www.naeyc.org/files/ecada/file/2010%20NAEYC%20Initial%20&%20Advanced%20Standards.pdf
[14] Raver, C. C., Jones, S. M., Li‐Grining, C., Zhai, F., Bub, K., & Pressler, E. (2011). CSRP's impact on low‐income preschoolers' pre-academic skills: Self‐regulation as a mediating mechanism. Child Development, 82(1), 362-378.; Blair, C., & Raver, C. C. (2014). Closing the achievement gap through modification of neurocognitive and neuroendocrine function: Results from a cluster randomized controlled trial of an innovative approach to the education of children in kindergarten. PloS One, 9(11), e112393.
[15] Mashburn, A. J., Pianta, R. C., Hamre, B. K., Downer, J. T., Barbarin, O. A., Bryant, D., ... & Howes, C. (2008). Measures of classroom quality in prekindergarten and children's development of academic, language, and social skills. Child Development, 79(3), 732-749.