Content Knowledge: Tennessee

2017 Early Childhood Preparation Policy

Goal

The state should ensure that its teacher preparation programs provide early childhood teachers with age-appropriate content knowledge and instructional strategies. This goal was new in 2017 and was not graded.

Analysis of Tennessee's policies

Tennessee offers a grades PreK-3 early childhood education license. Candidates are required to pass three tests: the Praxis II Education of Young Children (5024) test, the Praxis II Elementary Education: Content Knowledge (5018) test, and the Praxis II Teaching Reading: Elementary Education (5203) test.

Tennessee allows teachers to delay passage of content and pedagogy tests if they possess a bachelor's degree in a core content area.

Emergent Literacy and Oral Language:
The Praxis II Education of Young Children (5024) test addresses emergent literacy and oral language. The test requires candidates to know "the progression of oral language development, including but not limited to expectations for listening comprehension and verbal communication, and how to facilitate and expand children's oral language and vocabulary development."  Candidates are also required to "know strategies to address language delays." The test addresses emergent literacy by requiring candidates to be able to develop children's phonological awareness, concepts of print, fluency to support reading comprehension, phonics skills and how to expand children's use of vocabulary. The Praxis II Elementary Education: Content Knowledge (5018) test and the Praxis II Teaching Reading (5203) test measure candidates' knowledge of the main concepts of emergent literacy, including the role of phonological awareness, fluency, phonics and word analysis in literacy development. The Teaching Reading test also addresses oral language.

Tennessee's literacy standards for early childhood education teachers require knowledge of:

  • Oral language as a basis for reading development, including knowledge of students' dialect or different language characteristics, and language processing skills (including phonology, orthography, syntax, semantics, and discourse level skills);
  • Oral language awareness - ways in which oral language is developed and engaged across the disciplines and in daily life;
  • The organization and basic features of print - including orthography, syntax, discourse structure.
  • Phonological awareness - sound articulation and pronunciation, spoken words, onset and rime, syllables and sounds (phonemes); phonics and word recognition - understanding of letter-sound knowledge and alphabetic understanding, phonic/structural analysis elements along a continuum for decoding when reading grade-level phonics, and word analysis skills when decoding isolated words and in connected text, regular word reading, irregular word reading and reading in decodable text; phonics and word recognition - understanding of letter-sound knowledge and alphabetic understanding, phonic/structural analysis elements along a continuum for decoding when reading grade-level phonics, and word analysis skills when decoding isolated words and in connected text, regular word reading, irregular word reading and reading in decodable text;
  • Word composition - encoding when writing: grade-level phonics and word analysis skills when encoding words, including writing legibly;
Emergent Mathematics and Science: The Praxis II Education of Young Children (5024) test addresses emergent mathematics by requiring candidates to know how to develop children's  "knowledge of number names and the count sequence, understanding of the relationship between number name and quantities, ability to use counting to determine how many objects are arranged in various configurations, and understanding of the concepts of operations on rational numbers." The Praxis II Elementary Education: Content Knowledge (5018) test measures candidates' content knowledge on key mathematical concepts such as numbers and operations, algebraic thinking, geometry and measurement, and data, statistics and probability. Such background is necessary to teaching emerging math learners. 

The Praxis II Elementary Education: Content Knowledge (5018) test also measures candidates' content knowledge in key areas of science such as Earth and space science, life science and physical science and the basic elements of scientific inquiry. Such background is necessary to teach emerging learners of science.

Early Childhood Development: Neither of Tennessee's required licensure assessments (the Education of Young Children and Elementary Education: Content Knowledge tests) addresses early childhood development from birth through age eight.

Establishing a Positive and Productive Classroom Environment: Because well-run classrooms help children develop self-regulation and build academic skills, it is imperative that candidates are adequately prepared to create a positive and productive classroom environment. This includes classroom management skills, developing a child's executive functions and creating activities where children can learn through play.  Neither of Tennessee's required licensure assessments (the Education of Young Children (5024) and Elementary Education: Content Knowledge (5018) tests) addresses these skills.

Citation

Recommendations for Tennessee

Ensure that all preschool teachers possess sufficient knowledge of emergent mathematics and science.
Tennessee should—either through teacher preparation standards or test frameworks—ensure that all preschool teachers understand how to introduce and develop children's mathematical skills and effectively introduce science concepts. This understanding is crucial because early introduction to complex mathematical concepts can affect later achievement in mathematics.

Ensure that all preschool teachers possess sufficient knowledge of the main developmental stages from birth through age eight.

Tennessee should ensure—either through testing or preparation standards—that all preschool teachers are knowledgeable of children's developmental stages from birth through age eight. Such knowledge is essential so that all preschool teachers have an in-depth understanding of the children they are teaching.

Ensure that all preschool teachers possess the skills to create a positive and productive classroom environment.

Tennessee should ensure that all preschool teachers possess adequate understanding of how to develop children's executive functioning skills, build social emotional skills and manage children's play for learning purposes. This knowledge is critically important to ensuring that all preschool teachers are able to establish an environment that actively supports learning.

State response to our analysis

Tennessee recognized the factual accuracy of this analysis.  The state also indicated that the board will be considering new literacy standards, which will address the Pre-K-3 endorsement, as well.

Updated: December 2017

Research rationale

A strong preschool experience can set children up for achievement gains in elementary school,[1] and even more critically, for improved long-term outcomes including college attendance and degree completion.[2] However, not all preschool programs have achieved these positive results.[3] To increase the likelihood that children will reap benefits from attending preschool, states should ensure that the preschool teachers have certain essential skills and knowledge.

To lay children's foundation for learning to read—and to open the door to other areas of learning—teachers must understand how to develop children's oral language skills and build children's emergent literacy. Especially for young children who are already behind, preschool teachers can play a critical role in language development.[4] Emergent literacy encompasses a range of skills that are essential to reading, but may not come naturally to all children. These skills include phonological awareness, phonemic awareness, learning the alphabet, and concepts of print.[5] Teacher training in these areas can translate into substantial gains for children in alphabet knowledge, vocabulary, and language skills.[6] The early introduction of language and literacy can make a lasting difference for children. Unsurprisingly, children with low language and literacy skills in preschool demonstrate lower reading skills in kindergarten.[7] However, not all approaches to teaching emergent literacy are equally effective, and the quality of preschool curricula varies, making it that much more important that preschool teachers have ample training in how to develop their preschoolers' emergent literacy skills.[8]

Preschool teachers need similar grounding in teaching emergent math and science concepts. Research finds that introducing children to more complex mathematical concepts from an early age may increase their math ability in later years.[9] In fact, some research suggests that the relationship between children's early math skills and future math achievement is twice as strong as the relationship between emergent literacy and future reading achievement.[10] Little research exists on what teachers need to know about preschool science instruction, but experts agree that this area is important.[11]

Beyond knowing what to teach, preschool teachers need to understand the children they are teaching. As such, knowledge of child development from birth to age eight is important.[12] Similarly, preschool teachers need to know effective classroom management strategies that can build social-emotional skills and prevent or resolve many behavioral problems.[13] Of course, classroom management is about more than discipline: it is about establishing an environment that actively supports learning, including understanding how to develop children's executive functioning skills and manage children's play for learning purposes.[14] Teachers' emotional support for their students is associated with better social competence and lower rates of behavior problems.[15]


[1] For example, see: Andrews, R. J., Jargowsky, P., & Kuhne, K. (2012). The effects of Texas's targeted pre-kindergarten program on academic performance (Working paper no. 84). CALDER. Retrieved from http://www.nber.org/papers/w18598; Campbell, F. A., Pungello, E. P., Miller-Johnson, S., Burchinal, M., & Ramey, C. T. (2001). The development of cognitive and academic abilities: Growth curves from an early childhood educational experiment. Developmental Psychology, 37, 231-242; Ramey, C. T., Campbell, F. A., Burchinal, M., Skinner, M. L., Gardner, D. M., & Ramey, S. L. (2000). Persistent effects of early intervention on high-risk children and their mothers. Applied Developmental Science, 4, 2-14; Ramey, C. T. & Campbell, F. A. (1991). Poverty, early childhood education, and academic competence: The Abecedarian experiment. In A. Huston (Ed.), Children reared in poverty (pp. 190-221). New York: Cambridge University Press; Ramey, C. T., & Campbell, F. A. (1984). Preventive education for high-risk children: Cognitive consequences of the Carolina Abecedarian Project. American Journal of Mental Deficiency, 88, 515-523.
[2] Schweinhart, L. J., Montie, J., Xiang, Z., Barnett, W. S., Belfield, C. R., & Nores, M. (2005). Lifetime effects: The HighScope Perry Preschool study through age 40. Ypsilanti, MI: HighScope Press; Campbell, F., Conti, G., Heckman, J.J., Moon, S.H., Pinto, R., Pungello, E., Pan, Y. (2014, March 28) Early childhood investments substantially boost adult health. Science, 343(6178):1478-85. DOI: 10.1126/1248429. PMID: 24675955; Campbell, F. A., Pungello, E. P., Burchinal, M., Kainz, K., Pan, Y., Wasik, B. H., Sparling, J. & Ramey, C. T. (2012). Adult outcomes as a function of an early childhood educational program: An Abecedarian Project follow-up. Developmental Psychology, 48, 1033. Campbell, F. A., Wasik, B. H., Pungello, E. P., Burchinal, M. R., Kainz, K., Barbarin, O., ... & Ramey, C. T. (2008). Young adult outcomes from the Abecedarian and CARE early childhood educational interventions. Early Childhood Research Quarterly, 23, 452-466. Campbell, F. A., Ramey, C. T., Pungello, E. P., Sparling, J., & Miller-Johnson, S. (2002). Early childhood education: Young adult outcomes from the Abecedarian Project. Applied Developmental Science, 6, 42-57. Dynarski, S., Hyman, J., & Schanzenbach, D. W. (2013). Experimental evidence on the effect of childhood investments on postsecondary attainment and degree completion. Journal of Policy Analysis and Management, 32, 692-717. Chetty, R., Friedman, J. N., Hilger, N., Saez, E., Schanzenbach, D. W., & Yagan, D. (2010). How does your kindergarten classroom affect your earnings? Evidence from Project STAR. Cambridge, MA: National Bureau of Economic Research. Retrieved from http://www.nber.org/papers/w16381
[3] Lipsey, M. W., Farran, D. C., & Hofer, K. G., (2015). A randomized control trial of the effects of a statewide voluntary prekindergarten program on children's skills and behaviors through third grade. Nashville, TN: Vanderbilt University, Peabody Research Institute. Retrieved from http://peabody.vanderbilt.edu/research/pri/VPKthrough3rd_final_withcover.pdf
[4] Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research; Beck, I. L., & McKeown, M. G. (2007). Increasing young low‐income children's oral vocabulary repertoires through rich and focused instruction. The Elementary School Journal, 107(3), 251-271; Institute of Medicine & National Research Council. (2015). Transforming the workforce for children birth through age 8: A unifying foundation. Washington, DC: The National Academies Press; M. Adams, personal communication, January 2016; Dickinson, D. K., & Porche, M. V. (2011). Relation between language experiences in preschool classrooms and children's kindergarten and fourth‐grade language and reading abilities. Child Development, 82(3), 870-88.
[5] U.S. Department of Education, Institute of Education Sciences, What Works Clearinghouse. (2012). Early childhood education interventions for children with disabilities intervention report: Phonological awareness training. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/InterventionReports/wwc_pat_060512.pdf; Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.
[6] Landry, S. H., Swank, P. R., Smith, K. E., Assel, M. A., & Gunnewig, S. B. (2006). Enhancing early literacy skills for preschool children bringing a professional development model to scale. Journal of Learning Disabilities, 39(4), 306-324.; U.S. Department of Education, Institute of Education Sciences, What Works Clearinghouse. (2012). Early childhood education interventions for children with disabilities intervention report: Phonological awareness training. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/InterventionReports/wwc_pat_060512.pdf
[7] Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.
[8] Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.
[9] Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What's past is prologue: Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43(7), 352-360.
[10] Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.; Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., ... & Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428-1446; Other research found that children's math ability in preschool predicted their math ability at age 15, even after controlling for early reading ability and family characteristics. See: Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What's past is prologue: Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43(7), 352-360.
[11] Putman, H., Moorer, A., & Walsh, K. (2016). Some assembly required: Piecing together the preparation preschool teachers need. Washington, DC: National Council on Teacher Quality. Retrieved from: http://www.nctq.org/dmsStage/Preschool
[12] Putman, H., Moorer, A., & Walsh, K. (2016). Some assembly required: Piecing together the preparation preschool teachers need. Washington, DC: National Council on Teacher Quality. Retrieved from: http://www.nctq.org/dmsStage/Preschool
[13]  Diamond, K. E., Justice, L. M., Siegler, R. S., & Snyder, P. A. (2013). Synthesis of IES research on early intervention and early childhood education (NCSER 2013-3001). National Center for Special Education Research.; Epstein, M., Atkins, M., Cullinan, D., Kutash, K., and Weaver, R. (2008). Reducing behavior problems in the elementary school classroom: A practice guide (NCEE 2008-012). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/behavior_pg_092308.pdf; National Association for the Education of Young Children. (2010). 2010 NAEYC standards for initial and advanced early childhood professional preparation programs. Retrieved from http://www.naeyc.org/files/ecada/file/2010%20NAEYC%20Initial%20&%20Advanced%20Standards.pdf
[14] Raver, C. C., Jones, S. M., Li‐Grining, C., Zhai, F., Bub, K., & Pressler, E. (2011). CSRP's impact on low‐income preschoolers' pre-academic skills: Self‐regulation as a mediating mechanism. Child Development, 82(1), 362-378.; Blair, C., & Raver, C. C. (2014). Closing the achievement gap through modification of neurocognitive and neuroendocrine function: Results from a cluster randomized controlled trial of an innovative approach to the education of children in kindergarten. PloS One, 9(11), e112393.
[15] Mashburn, A. J., Pianta, R. C., Hamre, B. K., Downer, J. T., Barbarin, O. A., Bryant, D., ... & Howes, C. (2008). Measures of classroom quality in prekindergarten and children's development of academic, language, and social skills. Child Development, 79(3), 732-749.