Prep Resources: Teaching Elementary Math Content

Louisiana State University and Agricultural \& Mechanical College has generously provided syllabi for three courses that address the critical subject areas of numbers and operations, geometry, algebra and data analysis.

The syllabi for the three courses follow this cover page:

- Math 1201 Number Sense and Open-Ended Problem-Solving
- Math 1202 Geometry, Reasoning and Measurement
- Math 2203 Proportional and Algebraic Reasoning

Following the syllabi are lecture notes for Math 1201 Number Sense and Open-Ended Problem-Solving.

National Council on Teacher Quality
1120 G Street, NW, Suite 800
Washington, D.C. 20005
Tel: 202 393-0020 Fax: 202 393-0095
Web: www.nctq.org

Louisiana State University and Agricultural \& Mechanical College

Math 1201, \square Fall, 2011

Prerequisites: None.
Goals: This course is a mathematics course for teachers focusing on elementary school mathematics from the perspective of teaching these concepts to elementary school students. The main goal, of course, is to acquire a solid knowledge of the material. But an elementary school mathematics teacher needs to know much more, including:
(i) how YOU present the material in the simplest, clearest way;
(ii) how YOU recognize the appropriate sequential order for developing mathematics skills;
(iii) how to identify and alleviate "pot-holes," i.e. what the students will find difficult and what errors they are likely to make, and
(iv) how YOU explain that each topic helps advance the mathematical level of the students.

Texts:

- Elementary Mathematics for Teachers, by Thomas H. Parker and Scott Baldridge.
- Primary Mathematics Textbooks (U.S. Edition) — Primary Mathematics 3A, 4A, 5A, and 6A and Workbook 5A. Students using this elementary school curriculum were tested as the best in the world. We will do many problems from these books.

These books will also be extraordinarily useful as you begin your teaching career.
Expectations: Classes will be primarily lectures, with problem solving individually and in small groups. You are expected to take complete notes, to participate in class activities, and to ask questions about what you do not understand. We will take the daily attendance by homework or quizzes or special assignments.

Grading Policy: There will be 3 hourly exams, a final exam, and homework/quizzes/special assignments, with percentages as shown below. Missed exams will count as 0 points. Only under rare circumstances (such as illness with a doctor's written excuse) will a make-up exam be given.
There is NO MAKE-UP on your daily grades.
The grading scale is straightforward:

$$
\begin{array}{lll}
90 \%-100 \%=\text { A } & 77 \%-79 \%=\text { B } & 60 \%-66 \%=\mathrm{D} \\
87 \%-89 \%=\text { A- } & 74 \%-76 \%=\text { C }+ & 0 \%-59 \%=\mathrm{F} \\
84 \%-86 \%=\text { B+ } & 70 \%-73 \%=\text { C } & \\
80 \%-83 \%=\text { B } & 67 \%-69 \%=\text { C }- &
\end{array}
$$

This grading scale will not be curved, even at the end of the semester. All grades are based on how well each student learns the material, so grades are not competitive. We could have an "all - A" class, or a "no - A" class, or any combination otherwise.

Tentative Exam Schedule:

15 \% First Hourly Exam
15 \% Second Hourly Exam
15 \% Third Hourly Exam
30 \% Final Exam

TBA 25\% Homework \& Quizzes Daily

Homework and Quizzes: Mathematics is learned by practice, and confidence is gained through mastery of the material. Homework will be assigned daily in class and is due at the beginning of the next class. There might be occasional quizzes. Homework and quizzes will count 25% of your grade. This will be done according to the following point system: over the semester $250-300$ points will be given in graded homework and quizzes. If you earn $\mathbf{2 0 0}$ points you will get the full $\mathbf{2 5 \%}$, otherwise your score will be proportional to how you did out of 200 points. It will take your consistent effort on these assignments to earn 200 points.

You should plan on spending at least 2 hours of homework for each class meeting. It is essential not to get behind; we will work at a brisk pace.

You are encouraged to work in groups on difficult homework problems. This doesn't mean that you should copy from someone or allow someone to copy from you. Rather, you should explain the difficult problems and solutions to one another to help each other understand.

Do not let yourself get behind the class! As in most math courses, the material progressively builds upon itself. If you do not understand a particular topic ask in class or in office hours.

Calculators: Calculators will not be used for this class, and will not be allowed for exams.
A successful elementary school teacher should be confident and comfortable solving problems mentally and on paper. One of the goals of this course is to develop that facility.

Important dates:

- Dates for dropping or withdrawing from a course, see calendar of semester.
- Monday, September 5, 2011 - holiday, no class.
- Friday, Oct 14, 2011 - holiday, no class.
- Wednesday and Friday, November 23 \& 25, 2011 Thanksgiving holiday, no class.
- December 7, 2011 Last Day of Math 1201-2

GOOD LUCK, STUDY HARD, LET'S HAVE FUN.

MATH 1201

DAILY SCHEDULE

DATE	BRING TO CLASS	! ECTION IN CLASS	READ SECTION(S), WORK HOMEWORK
	text ${ }^{1}$	1.1	Preface, HW Set 1
	text	1.2	1.2, HW Set 2
	text	1.3, 2.1	1.3 \& 2.1, Set 3
	text	1.4	1.4, Set 4
	text	1.5	1.5, Set 5
	text, 3A	1.6, 1.7	1.6 \& 1.7, Set 6 (Set 7, 1,2,4,5)
	text, 3A, 5A	2.1, 2.2	All Chap 2, Set 7, 1,2,3,5; Set 8, 1,2
	text, 3A, 5A	2.2, 2.3	Intro Chap 3, Finish Set 8, Set 9
	text, 3A	3.1	3.1, Set 10
	text, 3A	$3.2,3.3$	3.2, 3.3, Set 11
	text, 3A	3.3	3.3, Set 12, not \#7, Memorize sqrs to 20
	text, 3A	3.4	3.4, Set 13
	text, 4A, WB5A	3.5 est.	3.5, Set 14, 1-3,6c: wkbk 5A, ex 4, 1-4; 5abef, 6abef
	text, 5A \& WB5A	3.6L Div.	3.6, Set 15; wkbk 5A, Ex 6 (p.16)
		EXAM 1	
	text, 6A	4.1	4.1, probs 3,5,6 of Set 16
	text, 6A	4.1	Finish Set 16
	text	4.2	4.2, Set 17
	text	4.3	4.3, Set 18
	text, 4A	5.1	5.1, Set 19

[^0]
MATH 1201 Spring 2012 DAILY SCHEDULE

DATE	BRING TO CLASS	SECTION IN CLASS	READ SECTION(S), WORK HOMEWORK
	text	5.2,5.3	5.2, 5.3, Set 20, Set 21
	text	5.4	5.4, Set 22
	text, 3A, 4A	6.1	6.1, Set 24
	text, 4A, 5A	6.2	6.2, Set 25
	text, 5A	6.3	6.3, Set 26
	text, 5A	6.4	6.4, Set 27
	text	6.5	6.5, Set 28
		EXAM 2	
	text	6.6	6.6, Set 29
	text, 5A, 5AWB, 6A	7.1, 7.2	7.1, 7.2 Set 30
	text, 6A	7.2	7.2, Set 31
	text, 6A	7.3	7.3, Set 32
	text	8.1	8.1, Set 34
	text	8.2	8.2, Set 35
	text	8.3	8.3, Set 36
	text, 4A, 5A	9.1	9.1, Set 37
		EXAM 3	
	text, 4A, 5A	9.2	9.2, Set 38
	text	9.3	9.3, Set 39
	text	9.4	9.4, Set 40

FINAL EXAM

Louisiana State University and Agricultural \& Mechanical College

MATH 1202 Spring, 2012

Prerequisites: 1201.
Goals: This course is a mathematics course focusing on elementary school mathematics. The main goal, of course, is to acquire a solid knowledge of that material. But an elementary school mathematics teacher needs to know much more, including: (i) how to present the material in the simplest, clearest way, (ii) the appropriate sequential order for developing mathematics skills, and (iii) what the students will find difficult and what errors they are likely to make, and (iv) how each topic helps advance the mathematical level of the students.

Texts:

- Elementary Geometry for Teachers, by Thomas H. Parker and Scott Baldridge.
- Primary Mathematics textbooks (U.S. Edition) - Primary Mathematics 3B, 4A, 5A, 5B and 6B. Students using this elementary school curriculum were tested as the best in the world. We will do many problems from these books.
- New Elementary Mathematics 1
- Manipulative kit (optional, but recommended)
- In addition, you will need items including: ruler, protractor, compass (for drawing circles, not navigation), scientific calculator.

Expectations: Classes will be primarily lectures, with problem solving individually and in small groups. You are expected to take complete notes, to participate in class activities, and to ask questions about what you do not understand. Attendance will be taken.

Grading Policy: There will be 4 hourly exams, a final exam, homework/quizzes, as well as a project (see below) with percentages as shown below. Missed exams will count as 0 points. Only under rare circumstances (such as illness with a doctor's written excuse) will a make-up exam be given. However, in such a case, do not wait until you return to class to speak with me about a make-up. Either arrange for it beforehand, or email me no later than the day of the missed test.

Grade Breakdown: $\quad 45 \% 4$ Exams
25\% Final Exam
20% Homework \& Quizzes
10\% Project

The grading scale is straightforward:

$$
\begin{array}{rlll}
90 \%-100 \% & =\mathrm{A} & 80 \%-90 \% & =\mathrm{B} \\
70 \%-80 \% & =\mathrm{C} & 60 \%-70 \% & =\mathrm{D} \\
0 \%-59 \% & =\mathrm{F} & &
\end{array}
$$

This grading scale will not be curved, even at the end of the semester. All grades are based on how well each student learns the material, so grades are not competitive. Grades in 1202 are based on understanding, not upon comparisons with other students.

Homework and Quizzes: Mathematics is learned by practice, and confidence is gained through mastery of the material. Homework will be assigned daily in class and is due at the beginning of the next class. There will also be frequent quizzes. Homework and quizzes will count 25% of your grade. This will be done according to the following point system: over the semester $250-300$ points will be given in graded homework and quizzes. If you earn 200 points you will get the full 20%, otherwise your score will be proportional to how you did out of 200 points. It will take consistent effort on these assignments to earn 200 points.

You should plan on spending at least 2 to 3 hours on homework for each class meeting. It is essential not to get behind; we will work at a brisk pace.

You are encouraged to work in groups on difficult homework problems. This doesn't mean that you should copy from someone or allow someone to copy from you. Rather, you should explain the difficult problems and solutions to one another to help each other understand.

Do not let yourself get behind the class! As in most math courses, the material progressively builds upon itself. If you do not understand a particular topic ask in class or in office hours.

The Project: The project for this course is a service-learning project. Each student will be required to visit a local elementary school 6-7 times during the semester to tutor math. A journal will be required for each visit as well as a final paper on the experience. Final project due within 2 weeks of final visit to the school, but no later than Wed Apr 4. Intermediate due dates are explained in the project guidelines and must be met, even if it means rescheduling visits. No late projects will be accepted.

Calculators: Calculators may be used for this class, and will be allowed for exams. However, no graphing calculators will be allowed during exams!

Other Miscellany: I will use Moodle to post handouts, grades, and communicate via email. Be sure that you check your PAWS email every day (or have it forwarded to your preferred email address). Several handouts have been posted on Moodle, and will be required for homework. You should download, print and place these into your class binder immediately.

Important dates:

- For holidays/university closures, see http://appl003.lsu.edu/slas/registrar.nsf/\$Content/Academic+Calendars.
- Jan 24th: Last day to drop without a W
- Jan 26th: Last day to add
- April 2nd: Last day to drop or arrange for conflicts with final exam
- Final Exam: Wednesday, May 9th, 5:30-7:30 pm

MATH 1202 tentative SCHEDULE and ASSIGNMENTS Spring 2012

EGT: Elementary Geometry for Teachers; NEM: New Elementary Math 1 Syllabus D; BH: Big Handout; Primary Math Books 3B, 4A, 5A, 5B, 6B

	Unknown angle proofs	EGT: Read 4.1; HW Set 13 \#1, 5, 7, 8, 9, 10, 12		
	Congruent Triangles	EGT: Read 4.2; HW Set 14 \# 1, 3, 6, 7, 8, 11		
	Proofs Using Congruent Triangles	EGT: Read 4.3; HW Set 15 \# 1, 2, 3, 4, 6, 7, 8, 12	EGT: Learn p. 99	
	Using Congruent Triangles; Properties of Quads	EGT: Read 4.4; HW Set 16 \# 3	BH: p. 8 \#1-9	NEM: p. 281 \# 1, 2, 3 (just find x and y ; no proofs)
	Using Congruent Triangles; Properties of Quads	EGT: HW Set 16 \# 5, 6	BH: p. 8 \#10-17	BH: p. 9
	Banquet Tables BH pgs 10-12	BH: p. 13,14,15	3B: p. 103 \# 5	
	Area and perimeter of rectangles; altitudes	EGT: Read 5.1, 5.2	$\begin{aligned} & \text { BH: p. } 16 \\ & \text { 3B: p. } 99 \text { \# } 5 \end{aligned}$	4A: p. 91-93 \# 1ac, 2ac, 3, 4, 6, 9
	Area of triangles, trapezoids, parallelograms	EGT: Read 5.3 BH: p. 17 \#3,4	5A: p. 68 \# 3; p. 69 \# 4, 5ac; p. 70 all	NEM: p. 336 \# 1, 3, 5, 6, 8, 10, 12, 13, 14, 15, 16, 18ace
	Area applications	EGT: HW Set 20 \# 12, 14ab	BH: 18	NEM: p. 344 \# 1b, 2, 3, 4, 6, 12, 14, 21
	Review			
	Test 2			

Mar 12	Pythagorean Theorem and Square Roots	EGT: Read 6.1; HW Set 21 \# 1, 2, 4, 5, 7ac, 8, 9, 10, 11 Read 6.2; HW Set 22 \# 1, 2abc, 3, 4, 8, 10, 13, 14		
Mar 14	Special Triangles	EGT: Read 6.3; HW Set 23 \# 1, 2abc (30° angle is opposite y), 3, 4, 5, 6, 7, 8, 10(Note: correction $R S=12$ not $Q R=12$), 11, 13, 14, 16 Note: Give exact, simplified answers to all problems regardless of book's instructions.	BH: p. 17 \# 1, 2, 5; pg. 19	
Mar 16	Similarity; Similar Triangles	EGT: Read 7.1 ; HW Set 24 \# 6, 8 Read 7.2; HW Set 25 \# 2, 3, 5	BH: p. 20,21	NEM: p. 378 \# 3abc, 4ac, 7 p. 390 \# 1, 2, 3, 8
Mar 19	Proving Similar Triangles	EGT: HW Set 24 \# 9, 10, 11, 12, 13, 14 HW Set 25 \# 4 (Hint: only 1 pair of similar triangles in b), 7, 8, 9 Note: Do not round. Give answers as reduced improper fractions where necessary.	BH: p. 22	
Mar 21	Scaling areas/similarity BH pgs. 23-25	EGT*: Read 8.1; HW Set 28 \# 7, 8, 9, 10, 11 Note: 9 b should read 'What is the ratio AC:CD?', and \#11 should read 'AB is parallel to $D E$ '. Note: Do not round. Give answers as reduced improper fractions where necessary.	BH: p. 26	
Mar 23	Circles: Arclength, and Circumference BH pg. 27	EGT: Read 8.2; HW Set 29 \# 4 (exact answer), 7 6B: p. 30	BH: p. 28 \#1 (arclength), 2, 4 (perimeter)	NEM: p. 341 \# 1c (circumference), 2a (perimeter), 3a, 7
Mar 26	Circles: Area and Area of a Sector	EGT: Read 8.3; HW Set 30 \# 5 6B: p. 36, 37	BH: p. 28 \#1 (area), 3, 4 (area)	NEM: p. 341 \# 1c (area), 2a (area), 4a, 5c, 6c
Mar 28	Applications; converting area units	EGT: HW Set 28 \#5(part b should refer back to \#14, p. 128), \#6 (No teacher's soln. required); HW Set 29 \# 9ab (exact answers); HW Set 30 \# 3, 4 Read 8.4 p. 188 "Choice of Units"; HW Set 31 \#1	BH: p. 29,30	NEM: p. 345 \# 7*, 8, 9, 17, 18, 20 *all units on \#7 are m
Mar 30	Review			
Apr 2	Test 3		BH: pg. 31	

Apr 4	3-D figures; nets	NEM: p. 311 \# 1, 2abcde, 6a	BH: 32,33	
Apr 16	Surface area of cylinders, prisms, pyramids	EGT: HW Set 34 \# 16acd BH: p. 34, p. 43 \#1	NEM: p. 357 \#3(SA only), 4a (exact SA) 5ad (exact SA), 7, 9bc, 10b, 14	
Apr 18	SA applications; volume of prisms and cylinders	EGT: Read 9.3; HW Set 34 \# 2, 3, 4, 5, 6, 7 (exact answer), $8,10,11,12,13,14$, 16ab	NEM: p. 357 \#3 (vol), 4 (vol), 5bc (vol), 9a, 10a, 12 5B: p. 85	$\begin{aligned} & \text { 6B: p. } 59 \\ & \text { BH: p. } 35 \text { \#2, 4, 5; p. 36, p. } 43 \\ & \text { \#2A-D } \end{aligned}$
Apr 20	Volume of cone, pyramid, sphere; conversions	EGT: Read 9.4; HW Set 35 \# 2, 3(exact answer), 4(exact answer), 8; Read 9.5; HW Set 36 \# 2, 9,11 (Vol only; ignore the 12 cm); HW Set 33 \# 1bc, 2, 3, 4ac	NEM: p. 358 \# 8	BH: p. 35 \#1, 3, 6, 7, p. 43 \#2 E, F
Apr 23	Volume Applications	BH: p. 37,38		
Apr 25	Scaling Volume/SA	EGT: HW Set 35 \# 1; HW Set 36 \# 3, 5	BH: p. 39	
Apr 27	review			
Apr 30	Test 4			
May 2	Transformations	EGT: Read 4.5	BH: p. 40,41,42	
May 4	Review for final			
Wed, May 9	FINAL EXAM 5:30-7:30 PM	Comprehensive		

MATHEMATICS 2203 PROPORTIONAL AND ALGEBRAIC REASONING

Instructor: Office:
E-mail address:

Spring 2012
Phone:
Office Hours:

COURSE DESCRIPTION:

Abstract

MATH 2203: Proportional and Algebraic Reasoning ($\mathbf{3}$ credit hours) Prerequisites: Professional Practice Block 1; 12 semester hours of mathematics including Math 1201 and 1202; concurrent enrollment in EDCI 3124 and EDCI 3125. 2 hours lecture, 2 hours lab/field experience. Mathematics content course designed to be integrated with Praxis II with the principles and structures applied to mathematical reasoning applied to the grades K-5 classroom. Development of a connected, well balanced view of mathematics; interrelationship of patterns, relations, and functions; applications of proportional and algebraic reasoning in mathematical situations and structures using contextual, numeric, symbolic and graphic representations; written communication of mathematics.

COURSE PURPOSE AND GOALS:

MATH 2203 builds on the foundation of mathematics concepts of problem solving, number and operations, measurement and geometry developed in MATH 1201 and MATH 1202. (Prior completion of these two courses is required.) Concurrent enrollment in EDCI 3124 (Mathematics Theory and Practice in the Elementary Grades) and EDCI 3125 (Elementary and Middle School Science) is required.

The student will:

- increase knowledge, understanding, and application of proportional and algebraic reasoning
- develop the mathematical processes of "finding, describing, explaining, and predicting" through the use of patterns
- use multiple representations (contextual, tabular, numeric, symbolic and graphic) to understand and make connections among mathematical concepts
- understand how math concepts evolve from concrete examples to generalizations expressed by function rules
- understand and analyze change in various contexts
- develop proportional reasoning skills by comparing quantities, looking at relative ways numbers change, and thinking about proportional relationships in linear functions.
- develop conceptual understanding of important mathematical principles, their interrelationship, and their vertical development

ELEMENTARY SCHOOL SITE-BASED MATHEMATICS TUTORING:

MATH 2203 includes required site-based lab/field experience in K-5 mathematics classrooms.
This will occur at local public elementary schools. There will be a specific assignment of school, teacher, classroom, days, and times. LSU now requires travel information from each student for each trip. It is your responsibility to complete the Service-Learning Student Trip Travel

Insurance On-line Form (lsu.edu/riskmgt/triptravelservice) or

(lsu.edu/riskmgt/triptravelmobile). Additional information about tutoring will be given in class.
CLASS MATERIALS REQUIRED: 2 Composition Books, Colored Pencils

REFERENCES: (You are not required to purchase these.)

Pearson/Allyn and Bacon, Van de Walle (2010). Elementary and Middle School Mathematics:
Teaching Developmentally
National Council of Teachers of Mathematics (2001). Navigating through algebra in grades
PreK-2
National Council of Teachers of Mathematics (2001). Navigating through algebra in grades 3-5

CONTENT OUTLINE:

I. Algebraic Thinking
II. Patterns, Relationships, Functions
III. Algebraic Symbols and Variables
IV. Mathematical Models
V. Analyzing Change
VI. Proportional Reasoning

GRADING PROCEDURE:
Grading Scale: $90-100 \%$ A $80-89.9 \%$ B $70-79.9 \%$ C $60-69.9 \%$ D Below 60 F
Semester grades: 2 tests 40%
Lab/Field Experience 25\%
To include: Initial Report, Interim Analysis, Final Report, Number of Sessions, Summary Activities, Student's Journal
In class written assignments, quizzes
10\%
Final Exam 25\%
100\%
There will be an in-class assignment or activity during each class period that is not a test day. These will be graded and one will be dropped at the end of the semester. There will be no makeups for absences, late arrivals, or early departures. A missed assignment will be recorded as a zero on the assessment. Only partial credit will be given for other categories of assignments/materials that are submitted late.

If you are absent, it is your responsibility to find out what is covered in class and what the assignment is. You are expected to have all work completed when you return to class and be prepared for class. Also, please plan to be here on test days which are in bold print on your syllabus. Tests are extremely difficult to make up. If there is a major emergency and you do miss a test, you will only be allowed to make it up if you contact me by phone or e-mail no later than the day of the test.

ACADEMIC HONESTY:

All students are responsible for adhering to the highest standards of honesty and integrity in every aspect of their academic careers. The penalties for academic dishonesty can be severe and ignorance is not an acceptable defense at Louisiana State University. The LSU Student Code of Conduct can be accessed at http://appl003.lsu.edu/slas/dos.nsf/\$Content/Code+of+Conduct?OpenDocument

CLASS SCHEDULE - SPRING 2012
Please note: Any session could have class and lab/field experience interchanged if circumstances warrant. If your lab/field experience is scheduled at a different time, please make sure the class times remain reserved for your attendance in class if schedules are changed.

Course Introduction What is Algebraic Thinking?	Patterns and Relationships
Patterns, Relationships and Functions	Patterns, Relationships and Functions Field Experience Sign-up All Sections - 205 Prescott Hall Friday, Jan 27 8:30 a.m.
Functions and Inverses	Functions and Inverses Math Tutoring Session Orientation
TEST 1	Math Tutoring Session - Week 1
Symbols and Variables	Math Tutoring Session - Week 2
MARDI GRAS	Math Tutoring Session - Week 3
Mathematical Models Field Experience Initial Report due	Math Tutoring Session - Week 4
Solving Equations	Math Tutoring Session - Week 5
Solving Equations and Systems of Equations	Math Tutoring Session - Week 6
Solving Equations and Systems of Equations Field Experience Interim Analysis due LEAP TESTING in EBRPSS - Phase 1 Check with your school to see if you may attend this day.	Math Tutoring Session - Week 7
TEST 2	Math Tutoring Session - Week 8
Analyzing Change SPRING BREAK -EBRPSS	SPRING BREAK -EBRPSS
SPRING BREAK - LSU	SPRING BREAK - LSU LEAP TESTING in EBRPSS- Phase 2 LSU students may not attend public schools.
Analyzing Change LEAP TESTING in EBRPSS- Phase 2 LSU students may not attend public schools	Math Tutoring Session - Week 9
Analyzing Change	Math Tutoring Session - Week 10
Final Class Summarize	Math Tutoring Session - Makeup Day Field Experience Final Report Due Summary Activities Due
FINAL EXAM - GROUP EXAM Wednesday, May $9-5: 30 \mathrm{pm}-7: 30 \mathrm{pm}$	

Go over syllabus (10 min - Talk thru)

1. * Taught by a mathematician

1 do mathematics and

* Emphasis on mathematics actually taught in Elem. school.

2. Graded like a math course
3. Go over point system; how to work in groups on HW.
4. Texts: Singapore \& math for Elem. Teachers

Elem. School math is familiar, but not trivial.

Teacher must know:

* why things are true
* how to explain them in several ways
* pitfalls

Types of elementary questions:
why is $(-1) \times(-1)=1$?
How do you show the area of a circle is πr^{2} ?
make up a word problem for $\frac{3}{4} \div \frac{1}{2}$?
Why does long division work? What must students know as
background before learning long division?

Section 1.1 Place value and models for Arithmetic

Numbers are abstract ideas:
3 apples
3 pears
small numbers innate (say: built into our brains, chimpanzees recognize "3")
Def the whole numbers are $0,1,2,3, \ldots$.
when used to count: cardinal; when used to order: ordinal

Taught by

* Counting chants: "1, 2, 3, 4,"
* counting exercises: "How many \qquad ?"
* patterns

$$
:: \longleftrightarrow 4
$$

based on

* Set model
* Measurement model

(say: number line - simplest meas: model)
Examples: Number of
(a) Weeks so far in the millennium

Ask for:
(b) People on Earth
(c) The height of the Sears Tower in feet
measurement
Set
(d) moons of Jupiter
(say: This can be formalized with set theory, not used in elem. school)

We write numbers as symbols called numerals
(say: A simple progression of 3 systems leads to the numeration system used today.)

1. Tally IIII, III, IIII, intuitive, but try 989 !
2. Egyptian Tallies up to 9 , then
heelbone 1 for 10
scroll e for 100
lotus \& for 1000

Ask: what does een111111 represent? shorter, clear, but try 989 !
III. Decimal Numerals: uses ten symbols $0,1,2, \ldots 9$:

The value of the dizit depends "On its position within the number."
this is called place value.

Advantazes of the
Decimal numeral system:

* Easy to record very large \#'s:
$127,671,238,541,265$
trillions billions millions thousands
* Extends to record numbers with arbitrary accuracy: 127.381
* much easier to multiply and divide
* used throughout the world.

If time:
Roman numerals are used ξ should be taught

$$
\text { Basic }\left\{\begin{array}{l}
1 \\
x \longleftrightarrow 10 \\
c \longleftrightarrow 100 \text { ("century") } \\
m \longleftrightarrow 1000 \text { ("millennium") }
\end{array}\right.
$$

$$
\begin{aligned}
\text { Shortened by } \quad & V \longleftrightarrow 5 \\
& L \longleftrightarrow 50 \\
& D \longleftrightarrow 500
\end{aligned}
$$

$$
\operatorname{mCCLXVII=\frac {1267}{ASK}} \quad 784=\frac{\operatorname{DCCLXXXIIII}}{A S K} \underbrace{\substack{\mathrm{~N} \\ \mathrm{~N}}}_{\text {or }}
$$

"subtractive principle"

HW Read introduction pg 1-5
Read S 1.1 Do HW set 1
(pg 6-10)

What to bring to class: Ask students to bring PM $4 A$ and $5 A$.

1.2 Place value

last time: * whole \#s

* models: set, measurement
* numerals: tally, Egyptian, Roman, Decimal
* place value: value of a digit is specified by its position within number ex 3437
\longrightarrow place value; 10 , value 30
\longrightarrow place value; 1000 , value 3000
1.2 - Place value

Say: Place value is so ingrained in adult minds. Difficult to appreciate importance ξ how hard it is to learn.

Decimal numbers formed by:
(step (1) Form bundles of $1,10,100 \ldots$
Place step (2) If necessary rebundle to ensure at most 9 bundles value of each denomination
Process think of: 10 pennies $=1$ dime
(step (3) Record number of each type of bundle in the appropriate position.
say: Given a pile of pennies, dimes and dollars, how do you represent a 3 -digit number?
The act of creating a 3 -digit numeral is a process! This process underlies nearly everything in elem. math.

Step (1) Put pennies in piles of ten
Step (2) Exchange each pile of 10 pennies for a dime.
Step (3) Exchange groups of 10 dimes for a dollar.

Example: $k-3$ problems which teach place value

* Counting by tens (step (1))
* Switching decades (what comes after 39? 59? 99? (step (2))
* Thinking of 1482 as 14 hundreds +82 ones
or 1 thousand +48 tens +2 ones (step (2))
\rightarrow * What is 20 more than 247? (step $\$$)
say: easier than "is more." It is place value not addition.

models/Teaching sequence:

(1) Base 10 blocks

SHOW CLASS - convey the idea of bundles of 10, but not the main idea of place value (position determines value.)
(2) Chip model

(3) Expanded form:

3874 means 3 thousands +8 hundreds +7 tens +4 ones

$$
3000+800+70+4
$$

Note: Egyptian numerals already in expanded form:

$$
\underbrace{e e}_{200} \underbrace{11 n}_{30} \underbrace{1}_{1}=231
$$

(4) Decimal numerals: instead of $200+30+1$ we write 231 .

Place value in:
Adding - simple principle: separately add ones, tens, hundreds.
Example: (easier) $325+163$
(1) Chip model

hundreds	$\frac{\text { tens }}{0}$	ones
000	00	0000
0	000	000

(2) Expanded form:

$$
\begin{array}{lr}
300+20+5 & 325 \\
100+60+3 \\
\hline 400+80+8 & +163 \\
\hline 488
\end{array}
$$

(not e-each step further from actual counting)

* avoiding hard step (2) - regrouping.
* can add columns in any order! Why?

Harder examples involve step (2) - regrouping composing: ("carrying" may be misleading, really exchanging)

decompose: "borrowing" misleading, exchanging)

(these problems are harder (with step (2)) should be done later)

Note: "tens combinations" $(1+9,2+8,3+7,4+6,5+5)$
helps with rearouping

$$
\text { Ex: } \begin{aligned}
& * 60-8=50+(10-8)=52 \\
& * 75+7=75+5+2=82
\end{aligned}
$$

Place value in multiplication:

* "Multiply by 10 " is done by "appending a zero"
$\left.\begin{array}{r}\text { Replace each penny } w / \text { dime } \\ \text { dime } w / \text { dollar }\end{array}\right\} \Rightarrow$ shift dizits
* special feature of place value. wouldn't work for 9 !
(1) Recall Hw set 1 \#7

$$
e \wedge \wedge 111 \times 10=\text { Jee } 1 \wedge n
$$

(2) pennies \longrightarrow dimes dimes \longrightarrow dollars
classroom Exercises: Show how place value is used to get answer

* $13 \times 10=13$ tens $=130$
* $321 \times 10=(3$ hundreds +2 tens +1$) \times 10$
$=(3$ thousands +2 hundreds +1 ten $)=3210$
* $5 \times 50=(5 \times 5) \times 10=25$ tens $=250$
* $24 \times 100=2400$
ordering: (provides exercises which test \& challenge place value understanding)
Fill in <or>
*57 ≥ 39 good
* 64>46 good
* $57 \leq 89$ not good! could get right answer for the wrong reason

Summary:
Easier problems - steps (1) \& (3) only (teach 1st)
Harder - all 3 steps

HW - Read 1.2ξ do HW set 2.

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
1.3 Addition
(yo over \#b of HW 2 - shows them how students will struggle)
*Review - what is place value? (Good Exam question)
(value of a digit is specified by its position within number)
Addition:

$$
2+3=5
$$

addends sum
Or
summands
Explained with models:

* set

$$
(x x)+\binom{x}{x x}=\binom{x \times x}{x x}
$$

* measurement steps on number line

lengths of sticks

Teaching stages:

meaning of addition mix of - mental math in chapter 3 (counting on)

- worksheet
- short word problems
say: Must balance. Don't want to hold math hostage by reading玄writing skills!

Properties of Addition:

1 Additive Identity: "Adding zero does nothing"
Reason - set: Bag 1 has 7 chips, bag 2 has none. Pour contents of
 say: not really an addition fact - is really def. of zero

2 Any-order property: A list of whole numbers can be added in any order (with same answer)
Ex: $3+7+2=(3+7)+2=(7+2)+3 \ldots$
parentheses indicate
which is done list

Reason - set: All chips thrown in same bay - order doesn't matter measurement: all lengths joined end to end - order doesn't matter

special cases:

a) For 2 numbers only Commutative Property -2 numbers can be added in either order to yield same result.

Ex: $3+2=2+3$ set: 000 Meas:

b) For changing order of addition, but not order of numbers - called associative property
Ex: $(3+2)+4=3+(2+4)$
Together (a) $+(b)$ give any-order prop.
Ex: $(2+3)+4=3+(2+4)$
true because

"Addition with in 20 " $=$ sums $0+0$ to $10+10$
-taught/learned using " Thinking strategies"

Thinking/teaching strategies (in order to be taught)

1 Adding $+1+2$
2 Adding: 0

Ex. $7+2=9$ easy by counting
$5+0=5$ natural, once taught

3 commutativity: Pick the easier order

$$
\frac{2+7}{\text { hard easy by (1) }}
$$

4 Doubles: $3+3,4+4,5+5$....
Ex: $\quad 5+5 \longrightarrow$ fingers

$$
b+b \longrightarrow e \text { egg carton }
$$

5 Adding $10 \quad 6+10=16 \quad$ Ask: what type of fact: Place value
$610^{\prime} \mathrm{s}$ combinations
$9+1,8+2,7+3,6+4,5+5$
(1)
(4)

7 Relating to doubles: "mental math"

$$
\begin{aligned}
& 6+7=(6+6)+1 \\
& 7+8=(8+8)-1
\end{aligned}
$$

8 compensation: "mental math"

$$
\frac{9+6}{+1}=10+5
$$

"6 gives 1 to the 9"
say: we will be doing lots of mental math to improve. will use large
numbers because smaller ones are already memorized.

Examples:

1. $38+32=40+30=70$ or $30+30+(8+2)$ +2 compensation Place value
2. $71+29$

$$
\begin{aligned}
& \text { 3. } \begin{aligned}
& 232+96+928+100 \\
&+4
\end{aligned}=328 \\
& \text { 4. } 36+35=(35+35)+1=71 \\
& \quad \text { doubles } \\
& \text { 5. } \begin{array}{c}
793+428 \\
+7 \\
+7
\end{array}
\end{aligned}
$$

Summarize!
How Read Sect 1.3. Do How Set 3.
*Review - place value

- Any Order Properties (Comm, Assoc)

Subtraction: Definition:

Terminology:

Say: Need to know these terms to read teacher guides

3 interpertations:

(1) Part-whole interpretation: "How much is the missing part?"

Ex: Set model: There were 24 cars and trucks. 16 were cars. How many were trucks?

meas. model:

$13-5=$ \qquad
say: same as missing addend?
(2) Take-away interpretation: "How much is the remaining part?" Ex: there were 8 pencils on the desk, 5 were picked up. How many were left?
Set:

Note: with bigger numbers chip models help

Ex: | tens | ones |
| :--- | :--- |
| $O O \varnothing$ | $00 \varnothing \varnothing$ |

34-12
measurement:
$\frac{111111111}{012(3) 45678} \quad 8-5=3$
(3) Comparison Interpretation: "How much more or less does one group have?"
Ex: Sam had 10 pencils. Jim had 4.
How many more pencils did sam have?
set: $\operatorname{sam} \phi \phi \phi \phi \phi \underbrace{000000}_{\text {? }}$
measurement:

Thinking learning strategies for subtraction within 20.
a) Four-fact families

$$
\begin{cases}6+7=13 \\ 7+6=13 & \text { *aid to connecting + and - } \\ 13-7=6 \\ 13-6=7 & \text { *reduce need for memorization }\end{cases}
$$

b) number bonds - display all four facts in one picture

c) counting down:

$$
\begin{gathered}
E x: 33-8=(33-3)-5 \\
=30-5 \\
=25
\end{gathered}
$$

*use round numbers as stepping stones.
d) counting up:

Ex: 334-289
start at 289. How far to 334?

Practice:

$$
\begin{aligned}
& 132-94= \\
& 1040-792=
\end{aligned}
$$

mental math:
Recall compensation for addition:

1. $67+59=66+60=126$

$$
+1
$$

$2 \underset{+1}{769+51}=770+50=820$
place value w/rebundling
3. $37-19=38-20 \quad($ not $36-20)$
$T_{1}=18$
Cplace value
Let students try this!
Likely to make mistake.

$$
\begin{aligned}
4.62-38 \longrightarrow & 62-38=60-36 \\
& (-2)(-2) \\
& 62-38=64-40 \\
& (+2)(+2)
\end{aligned}
$$

which is easier?
make subtrahend nice!

Compensation for $a-b$: increse/decrease a bb by the same amound, usually by making b "nice" (ie - a multiple of 10)
counting up

$$
\text { 5. } 113-89=(\mathrm{ml})=1+10+13=24
$$

place value

$$
(m 2)=114-90=24
$$

compensation
6. $188-53=135$ place value $w /$ no rebounding (subtract tens, ones)
7. $1859-532=1327$ just place value

How Read 1.4, do How \# 4.

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
say: what is multiplication?
we know $3 \times 6=18$. What does this mean? factors

Def: multiplication of whole numbers is repeated addition.
$3 \times 5=3$ groups of 5 or $5+5+5$
models:
a) set model:

"3 groups of 5 ones"
b) Measurement:

bar diagram

c) Rectangular array:
set

meas:
or

multiplication properties: (just through examples at this stage)
(1) Multiplication Identity (multiplication by 1)
what is $\left\{\begin{array}{cc}5 \text { groups of } 1 ? & 5 \times 1=1+1+1+1+1=5 \\ 1 \text { group of } 5 ? & 1 \times 5=5\end{array}\right.$
(2) Commutative Property: $3 \times 5=5 \times 3$
say: not obvious that 3 groups of $5=5$ groups of 3

$$
5+5+5=3+3+3+3+3
$$

clear from pic:

x	\bar{x}	\bar{x}	x	x
x	x	x	x	x
x	x	x	x	x

Rows $=3$ groups of 5
columns $=5$ groups of 3
*not obvious from other models.
(3) Associative Property:

$$
2 \times(3 \times 4)=(2 \times 3) \times 4
$$

$\because \quad \because \quad \because \quad 2$ vows of (3×4) dots

$$
\because \quad \because \quad \because=(2 \times 3) \text { boxes of } 4 \text { dots }
$$

(2) \& (3) together give the Any-order Property: A list of whole numbers can be multiplied in any order.

Ex: $3 \times(4 \times 2)=2 \times(3 \times 4)=(3 \times 2) \times 4$ etc.

Say: remember parentheses show which to mull. first.

Last property involves multiplication \& addition.
(4) Distributive property:
shaded

$$
3 \times(2+4)=(3 \times 2)+(3 \times 4)
$$

unshaded

used with place value:

$$
5 \times 13=5 \times(10+3)=50+15=65
$$

"B fives = 10 fives +3 fives"
Say: any - order \& Distributive Properties are involved in most arithmetic calculations.

Teaching/thinking strategies (3 teaching phases)
A. Intro phase- (endof grade 1)
a) $\times 2$ doubles (know from add)
b) $\times 3$ (taught)
c) $\times 0 \times 1$ (natural)
d) $\times 10$ (place value)
B. Mental math $\&$ word Problems (Ind grade)
a) $\times 5$-skip counting, mental math
b) commutative prop - rect array
c) $\times 9 \quad$-think $6 \times 9=6 \times 10-6$ (mental math $)$
d) $3 \times 40,20 \times 30$ - place value
e) Practice using Any-order \&Distributative props. - much practice, models
C. Close topic (by end of 3 rd grade)
a) squares $3 \times 3,4 \times 4, \ldots, 9 \times 9$-learned
b) Remaining facts -memorized.
ex. 8×7
say: knowing multiplication facts necessary for fluency. Short term memory freed up.
mental math:
(1) $\times 4$ double twice $17 \times 4=34 \times 2=68$
(2) $\times 8$ double 3 times $16 \times 8=32 \times 4=64 \times 2=128$
(3) $\times 5$
($1 / 2$ number) $\times 10$
or $\times 10$ then half

Practice:

$$
\begin{array}{r}
5 \times 18 \\
5 \times 42 \\
242 \times 5 \\
1282 \times 5 \\
15 \times 5 \\
43 \times 5 \\
165 \times 5
\end{array}
$$

(4) $\times 9$

$$
\begin{aligned}
& 9 \times 7=\text { think } 10-17(10-1)=70-7=63 \\
& 9 \times 13=13(10-1)=130-13=117 \\
& 9 \times 24= \\
& 9 \times 130=
\end{aligned}
$$

HW Read 1.5
HW \#5
bring PM 3A to next class

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
1.6 -Division

Def. Division is related to multiplication by "missing factor"
(say: similar to missing addend with subtraction)
Ex:

Note: : write 12 $\div 4$ not $12 / 4$ until fractions are mastered.
*No new facts needed- relate to multiplication
4-fact families: $\quad 5 \times 7=35$

$$
7 \times 5=35 \quad \text { *reduces need for memorization }
$$

$35 \div 7=5$
$35 \div 5=7$

Division is about making groups, illustrate using
$\left.\begin{array}{l}\text { set model } \\ \text { measurement model }\end{array}\right\}$ ask

- preferred, since set model is inefficient for large numbers

Partitive
"20 is 4 groups of what?"

say: don't confuse with

Measurement
"20 is how many 45?"

meas. model
Say: these are important ξ very different.
Partitive = how big is each part?
measurement = think of measuring w/ ruler length 4 .
How many parts?
*teacher knowledge - know how to vary word problems when teaching.

Examples: Primary 3A (have students open book)
-pg 45 \#2
-pg 47\#9
-pg 48 \#9
$-p g 65 \# 6-10$

Ask:

1) Partitive or measurement?
easier $\left\{\begin{array}{l}\text { 2) Interpretive question? } \\ \text { 3) which diagram type? }\end{array}\right.$
mental math:
Divide by 4. (divide by 2 twice)

*explain how underlined digits are used.

Divide by 5: (divide by 10 and double) or (double, then $\div 10$):

$$
\begin{array}{r}
330 \div 5 \\
1280 \div 5 \\
135 \div 5 \\
75 \div 5 \\
415 \div 5
\end{array}
$$

Compensation:

$$
75 \div 5=150 \div 10
$$

doubling both gives same answer

75 is how many 5's?

150 is how many 10^{\prime} s?

$$
\begin{aligned}
& 140 \div 5=280 \div 10=28 \\
& 135 \div 15=270 \div 30=27-3=9
\end{aligned}
$$

compensation again!

$$
\begin{aligned}
& 1400 \div 35=280 \phi \div 7 \phi=40 \\
& 150 \div 6=50 \div 2=25 \\
& (\div 3)(\div 3)
\end{aligned}
$$

Division by 0 is undefined
case 1: $8 \div 0$
8 is how many O 's?
No answer
case 2:0 $\div 0$
O is how many O^{\prime} s? Too many answers!
*so _- \div is undefined because either way it doesn't specify a number!

Remainders: Amount left over
set: $13 \div 4$

measurement:

quotient Remainder theorem:
For any whole numbers $a \leqslant b(b \neq 0)$ there are unique whole numbers. q (quotient) and r (remainder) so that

$$
a=b q+r \quad 0 \leq r<b
$$

Explanation: $a=(9$ groups of $b)+$ remainder

* measure bar of length a with ruler of length b :

HW Read $1.6 \xi 1.7$
Do HW 6
Bring $3 A \xi 5 A$
*if time - bar diagrams for $3 c d$ Wb, 4ab, 6
*HW 5-go over 4,6,7

21-23 mental math and word Problems
(2 days, all of chp.3)
What to bring to class: Ask students to bring PM $4 A$ and $5 A$.
mental math

* using distributive property

$$
\begin{aligned}
& 108 \times b=(100+8) \times b=600+48=648 \\
& 165 \div 15=(150+15) \div 15=10+1=11 \\
& 410 \div 13= \text { (think } 3013 \text { s makes } 390 \\
&+113 \text { makes } 403 \\
& 7 \text { remain) } \\
&= 31 \text { RT }
\end{aligned}
$$

* Compensation:
for t: $\quad \begin{aligned} & +13 \\ & 87+56\end{aligned} \quad 100+43=143$
for -: $\quad 87-56=81-50=31$
for $x: \quad 25 \times 36=(25 \times 4) \times 9=900$
for $\div: \quad 204 \div 6=102 \div 3=$

$$
(90+12) \div 3=30+4
$$

word Problems

Should be \quad Short, clear. succinct

* Interesting but not Flowery
* Realistic but not contrived
* Self contained and well defined
(say: There may be many ways to answer, but only one, or at most, several specific answers)

In sets which * are not varied in context (different models, etc.), not underlying math

* build up 1 step $\rightarrow 2$ step \rightarrow multi step.
we will do many word problems:

Examples:

Note to instructor: Do selection from sing 3A pga. 66-67

* Do some at top of page by mental math.
* Do some word problems (w/Teacher's solutions)

For division prob., ask for interpretation

Teacher's Solutions (Graded on this criteria)
Example
There are 8 stamps in a set. Copal bought 120 sets. After selling some stamps, he had 680 left. How many did he sell?

answer clearly stated

Have students do problems 7 - 9 on pg 90 sing 3 A time permitting. Have students present Teacher's solutions (T.S.).

HW Do HW set Read section 22 乡 section 23 , then do HW set 7 . Bring sing $3 A \& 5 A$ to next class
(*) Note to Instructor:

* Put students in pairs of 2 , divide class into 3 sets.
* Assign 3 problems at a time. one to each $\frac{1}{3}$ of the class.
* Give only 2-3 minutes - strictly timed.
* while students work, write questions on the Blackboard.
* Select 3 pairs of students to go up and present Teachers solution.

Do sing 3A; pg 54 prob 10-12
$\begin{array}{ll}\text { pg } 55 & \text { prob } 9-11 \\ \text { pg } 56 & \text { prob } 9-11\end{array}$ if time
multi-step word problems combine 2 different operations - the most interesting cannot be classified as a $+,-x, \div$ problem.

Do sing 5 as in (*). pg
Book 5A, pg $22-23$

* Go over pg 22
* work thru \#1-3 with class
* groups of 2 for \# 1-4 of practice 1D of sing 5A
* 5 A pa bb \#31

Peter, John, and Dan shared $\$ 1458$ equally. Peter used part of his shave to buy a bicycle and had $\$ 139$ left. What was the cost of the bicycle?

1458

The bike cost $\$ 347$.

* 5 A pg 90 \#16

Ali saved twice as much as Ramat. Maria saved $\$ 60$ more than Ramat. If they saved $\$ 600$ altogether, how much did maria save?

maria saved $\$ 195$.

In groups of 2.
Assign \#2, \#4, \#8 on pare 25 of sing 5A
Send to the board after 4 min to present Teacher's solutions
If time, jive a quiz.
HW Do HW set 6 and HW Set 8
(say: we did some of these problems)
$3.1 \xi 3.2$ - Add/subtraction Algorithm
3.1- Addition Algorithm:

Def: An algorithm is a systematic, step-by-step procedure to solve a class of problems.

Ex: spell check, Addition Algorithm

Algorithms taught because:

* Always work-builds confidence
* become automatic - frees up memory
* completes topic \& establishes "level playing field"
say: everyone in the class can $+,-x, \div$

Prerequisites to addition algorithm:

1) count to 1000
2) 1-dizit add facts
3) 2-dijit mental math
4) Expanded form via chip models
a) Add $w /$ in same denomination
b) Rebundling "10 dimes = 1 dollar"

Teaching Stages:

1) No rebundling - simple idea: add ones, tens, hundreds separately. (say: no step (ii) of place value process)

* be sure, to do chip model छ\#'s at the same time! make connection between model ξ abstract

$100^{\prime} s$	$10^{\prime} s$	$1^{\prime} s$	231 0000 00000	000
	00	0000	+724	

quickly move
Concrete \longrightarrow Pictorial \longrightarrow Abstract
coinsietc chipmodel numbers only

2) Rebundling

c) combinations

EX: $\begin{array}{r}295 \\ +\quad 326 \\ \hline\end{array}$

Have students try:
7065
$+3836$
3) Alternative Algorithm: LATTICE METHOD note: works only when place-value process known before hand otherwise memorization w/o understanding

Ex:

568
$+\quad 394$
$0 / 8 / 51 / 2$
$9 / 6 / 2$

Try:

$$
\begin{array}{r}
3576 \\
+\quad 4829 \\
\hline
\end{array}
$$

say: ${ }^{(1}$ Chip models used briefly to introduce algorithm. Then only numbers ${ }^{(2)}$ Don't draw chip models on HW unless specifically asked.
3.2 Subtraction Alzorithm: (done similar to addition)

Teaching stazes:

1) No rebundling (subtract ones, tens, etc)
Ex: $\begin{array}{r}58 \\ -\quad 23 \\ \hline 35\end{array}$
Comparison:
Take-away:

2) Rebundling: (decomposing a ten, splitting a bundle, etc)

10 \qquad 00000
00000

Hardest case:
3916
Ex: $\quad 406$
-139

$100^{\prime} \mathrm{s}$	$10^{\prime} \mathrm{s}$	1 1's
0000		000
		000
		00000
	00000	
		00000
		00000

Teaching Remark: Don't let student invent their own algorithms

1) mental math is for creativity
2) Hard on teacher
3) Aljorithm is the structured conclusion.

Practice algorithms with word problems

Ex: M. Smith earned $\$ 3,265$. His wife earned $\$ 2,955$.
How much more money did he earn than his wife?
(individua l-2 minutes)

He earned $\$ 310$ more.

Alternate Algorithm: "Subtract from 10"
Ex: $\begin{aligned} & 210 \\ & 3 \\ & \$\end{aligned}$
-19
$18) \longleftarrow$ think: $(10-9)+7$
ten's complement

Try: | 61 | 272 |
| ---: | ---: |
| -37 | -138 |

Adv: only need $10^{\prime} s$ complements
Dis: not standard, must add too!

Common Error:
45
$\frac{-7}{42}$$\quad$ What's the mistake?

How Read $3.1 \leqslant 3.2$
HoW 10 \& 11

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
3.3-multiplication Algorithm
mental math:

$$
\left(\begin{array}{l}
\text { in-class ex } \\
1-\min \text { each } \\
\text { step }
\end{array}\right)
$$

Step 1: $11^{2}=121$
$12^{2}=144$
$13^{2}=169$
$14^{2}=196$
$15^{2}=225$
$16^{2}=256$

Step 2: Use facts to call
a) 11×12
b) 14×15
c) 16×18
d) 22×12

Teacher knowledge: Using Place value (PV) \& Distributive Property (DP) every "x" can be re duced to a series of 1-dizit " x ".

Stage 1: 1 -digit x (2 or 3 digit)

$$
\begin{aligned}
\text { Ex: } 3 \times 145 & =3 \times(100+40+5) & & \text { PV (Expanded Form) } \\
& =300+120+15 & & \text { DP } \\
& =435 & & \text { PV }
\end{aligned}
$$

Stage 2: 2 -digit \times (2 or 3 digit)

$$
\begin{aligned}
\text { Ex: } 23 \times 145 & =(20+3) \times 145 & & \text { PV (Expanded Form) } \\
& =(20 \times 145)+(3 \times 145) & & \text { DP } \\
& =10(2 \times 145)+(3 \times 145) & & \text { Any-Order } \\
& & & \text { stage 1 }
\end{aligned}
$$

*stage 2 problems reduce to stage 1 which reduce to 1-dizit "x".
Teaching Remarks: PV \&DP should be repeatedly covered before \& during the teaching of the algorithm.
models: Distributive Property: rect. array
place value: chip model

1) (Grade 3\&4)
a) 1-dizit mult. in different P.V.

6	$60<6$ tens	600
$\times 4$		
24	$\underline{\times 4}$	$\underline{4}$
$240 \leftarrow 24$ tens	2400	

b) multiplication without regrouping.
(PM 3A P5O pr 2)
Ex: 3×12

1) chip diagram

$10^{\prime} s$	$1 ' s$
0	0
0	0
0	0
3	6
3	

2) Alzorithm Format
$\begin{array}{r}12 \\ \times 3 \\ \hline 36\end{array} \begin{array}{r}12 \\ \times 36 \\ +\quad 30 \\ \hline 36\end{array}$
3) Distributive Property hizhlighted
($10+2$)
```
$ 
30+6
```

c) mult w / regrouping in top denomination

53	$100^{\prime} s$	$10^{\prime} s$	$l^{\prime} s$
$\times 3$			
159	$\bullet \leftrightarrow$	00000	000
		00000	000
		00000	000

* do model ξ abstract at the same time
*why easier in top den? *mult ones: $3 \times 3=9$
*then (5×3) tens $=15$ tens
*Then regroup
d) Cult with regrouping in lower denominations
(1)

Ex: 23
+1 more
9 tens
e) Double regrouping

1
Ex: 33
$\times 4$
132
have students try
in yaps of 2
(use chip model)

$* 4 \times 3$ tens +1 ten $=12$ tens +1 ten
$=1$ hun +3 tens

Stage 2: (Grades 4 \&5)
a) Review stage 1
b) mull by $10,20, \ldots, 90$

Ex: $12 \times 40=12 \times 4$ tens $=48$ tens $=480$

c) Together

$$
\begin{aligned}
& \frac{24}{} \\
& \times 13 \\
& \hline 72 \longleftarrow 24 \times 3 \\
& \frac{240}{312} \longleftarrow \\
& \hline \text { total }
\end{aligned}
$$

* Then practice in word Problems

Alternate Algorithm: (say: still uses place value ξ distributive property)

Ex 1:
34×4

Ex 2:

Lattice Method: *Be very careful of arrangement.

uses:
*1-dig mull

* place value *lattice =array

Try: 2874

$$
\begin{array}{r}
19 \\
\hline
\end{array}
$$

HW Read 3.3. HW 12 Memorize $11^{2}-20^{2}$
what to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
*most important algorithm taught in elementary school

* Helps understand "successive approx"
(comes up often in math, science, computer science)
* Relating fractions \& decimalsi irrationals

Preveg's

1) Place value
2) 1-dizit "x" \leqslant " \div "
3) puotient \& vemainder
4) Long div.notation $28 \div 3 \longleftrightarrow 328$
5) Estimation (in 3.5)

Taught in 3 stages (can use Partitive or measurement)

\[\)| $\rightarrow \text { 1) 1-digit divisors } 3 \longdiv { 7 6 8 }$ |
| :--- |
| ask |
| for |
| these |
| 2) Estimation: Transition step |
| firs |
| $\longrightarrow \text { 3) 2-digit divisors }$ |

\]

$5 6 \longdiv { 4 8 3 2 }$

uses estimation

Stage 1:

Partitive approach
Ex: $M \leq$ Davis divided 13 candies equally among 4 children.

Each child had
with a total of
and \qquad distributed $\left.\begin{array}{l}\text { distributed } \\ \text { left over }\end{array}\right\}$ track of
[Note: this is quotient-remainder the: $13=\underbrace{(4 x)}+]_{-}]$ $13 \div 4=3 \mathrm{Ri}$
$\frac{3}{4} \longleftarrow$ \# to each child Record as $4 \sqrt{13}$ $12 \longleftarrow \#$ distributed $1 \longleftarrow$ left to distribute

Ex: Ann, Beth $\%$ Camile split $\$ 8.82$ equally. How much did each Jet?

1) Distribute dollars.
two left. convert to dimes

$$
\begin{aligned}
& \frac{2}{3 \longdiv { 8 : 8 2 }} \frac{6}{28} \longleftarrow \text { \$2 each } \\
& 28 \\
& \text { distribute } \$ 6
\end{aligned}
$$

2) Distribute dimes

1 dime left. Convert to pennies $\longrightarrow 12$ pennies

$$
\begin{aligned}
& \frac{29}{38: 8: 2} \\
& \frac{6}{28} \\
& \frac{2}{2: 7} \\
& \frac{2}{1: 2}
\end{aligned}{ }^{2} \text { dimes each }
$$

3) Distribute pennies

\[

\]

Done
observe:

* Essential vole of place value
* Each step same distribute, record, make change
* Steps give better ξ better approximations

$$
200 \leadsto 290 \leadsto 294
$$

(say: one more correct digit each time)

Repeated subtraction approach (say: similar-uses meas model)
Ex: Find $1984 \div 7$
Think: How many 7 's in 1948? (what type of interpretation? Multi-Digit)

1) Flying leaps - 100 length 7 steps at a time

$$
\begin{gathered}
2 \\
711984 \\
\frac{1400}{584}
\end{gathered}
$$

leaves 584 to go
2) Giant Leaps - 10 length 7 steps at a time

3 steps $=21$. leaves 3

This completes stage 1. Next time stage 2 \& then 3.
HW -Read 3.4
do HW \#13
bring PM 4A \& workbook 5A

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
3.5-Estimation-transition to multi-dizit long division

Division with 1-dizit divisions (stage 1) is easy because we know 1 through 10×10 mult facts.

Ex:
623
$\frac{36}{36}$
$\frac{12}{12}$ (give students 30 sec.)
ask: what did you have to know? $6 \times 6,6 \times 2$
If werknew mult table for 16 , then long division by 16 would be easy:
wse $\quad 16 \times 1=16$
mental $16 \times 2=32$
$16 \times 3=48$
$\longdiv { 5 7 2 }$
math $16 \times 4=64$
169152
to fill

$$
16 \times 5=80
$$

$16 \times 6=96$
$\frac{80}{115}$
out $\quad 16 \times 7=112$
$16 \times 8=128$
$\frac{112}{32}$
$16 \times 9=144$

Ex: find $16,500,188 \div 29$ (groups of $2,2 \mathrm{~min}$) start
$2 9 \longdiv { 5 6 8 9 7 2 }$
乡pt $\{29 \times 1=29$
out $29 \times 2=58$
$\rightarrow \begin{aligned} 29 \times 3 & =87 \\ 29 \times 4 & =4 \times\end{aligned}$
$\times 30-4=116$
145
200
174

$$
\frac{119}{260}
$$

$$
\times 5=145
$$

$\times 5=1450-4=116$
232

$$
\times 6=174
$$

$$
\begin{aligned}
& \times 7=203 \\
& \times 7
\end{aligned}
$$

$\times 7=203$ 281
$\times 8=232$
261
$\times 9=261$

When we don't have such tables we can estimate instead.
Def. Estimation is the process of finding an approximate answer (the "estimate") to a given computation.
used:
*when only approx answers are required.
"Roughly how many hours in 400 min of cellphone time?" $400 \div 60 \approx 420 \div 60=7 \mathrm{hrs}$
*to check answers to complex calc's

$$
\frac{123.234 \times 1.8873}{3.256} \approx \frac{120 \times 2}{3} \approx 80
$$

Say: can also estimate measurements (how much does this child weigh?) but we won't discuss that.

Estimation uses: mental math, Place value, Round-off
Round up 5^{\prime} 's algorithm: (easily taught using number line)
Ex: Round to nearest 10
$52 \leadsto 50$

$57 \leadsto 60$
$55 \leadsto 60$
(round mid pt up by convention)
Ex: Round 2735 to nearest $10 \leadsto 2740$
$100 \sim 2700$
$1000 \sim 3000$
Look at PM 4A pg $13 \leqslant 15$

* It's an alzorithm
* quickly developed, pg 13 - \# line, pg 14 Arithmetic exer.
pg 15. Early word prob.

Estimation Techniques

1. Round to compatible \#'s

* $405 \times 243 \approx 400 \times 25=4 \times 100 \times 25=100 \times 100=10,000$
* $4778 \div 62 \approx 4800 \div 60=80$

2. Front end - truncate after $1^{\text {st }}$ or $2^{\text {nd }}$ largest denominations

* $476+531 \approx 47$ tens +53 tens $=100$ tens
$* 356+622 \approx 3$ hundreds +6 hundreds $=900$

3. Frout end with Adjustments

* $498+251 \xrightarrow{\text { frontend }} 400+200=600$

$$
\begin{aligned}
\xrightarrow[\text { adjust }]{ } 600 & +(100+50)=750 \\
& \approx 98+51
\end{aligned}
$$

4. High - Low Ranze estimate: Get upper/lower estimate by consistently rounding up or down

* Addition $587+734$

500		583		600
+700		+734		$+800$
1200	$<$	actual	$<$	1400
low				high

* multiplication 386×892

300	386	400
$\underline{\times 800}$	$\underline{x 892}$	$\underline{x 900}$
240000	$<$ actual	$<$360000 low high

Simple Estimation - Rounding to 1-dizit arithmetic problems
(ex: $78-6.7 \times 8.36-9$)
Have students open PM 5A workbook.

* Do Pg 11 in workbooks (2-minutes)
say: these are "1-dizit" arithmetic problems.
Goal is to reduce complicated problems to ones like these.
* Pg 12 do a, b, e,f , Notice rounding $\xi 1$-digit.
* Pg 13 do a, b, e, f

Then combine with $P V$:

* Pg 14 do $1 a, b$ MV
c (not 1-dizit so harder)
* Pg 15
- $2 a$ (on board)

$$
326 \times 47 \approx 300 \times 50=15 \times 10 \times 10 \times 10=15000
$$

rounding "same number of zeros"

- do 2bc
- do 3

Instructor puts on board:
$28 \times 229 \times 30 \times 200=\$ 600$
round round (compensation!!) up down
optional: Always an issue of how accurate to be:
$16.1 \times 27.3 \approx \begin{cases}16 \times 27 & \text { which to pick? Question } \\ 15 \times 30 & \text { for students \&teachers. } \\ 10 \times 30 & \end{cases}$
Teachers/books should be clear about

* expected accuracy
* method
* use numbers with "obvious" estimate

If time: PM 5A WB Pg 16-17 call on students to answer
$1 a, 1 b, 1 c, 1 d$

Do 2 a verbally (say: reduce to previous type of problem) Have students do 26, 3
\qquad put on board.

$$
\mathrm{HW} \text {-Read } 3.5
$$

$$
\begin{aligned}
805 \div 28 & \approx 800 \div 30 \\
& \uparrow \text { round round } \\
& \text { down up } \\
& \text { (compensation !!) }
\end{aligned}
$$

Do HW \#14

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
3.6-Multidizit Long Division

Ex 1: $\begin{array}{r}\frac{324}{134212} \\ \frac{39}{31} \\ \frac{26}{52} \\ \frac{52}{0}\end{array}$ have students do
${ }^{(1)}$ Interpretations: Partitive-distribute $\$ 42$ to 13 people...
$\Rightarrow \$ 3$ each, $\$ 39$ total, $\$ 3$ left....
Repeated subtraction-

These interpretations still apply, but build from 1-dizit division
(2) Facts needed: 13×3

$$
\begin{aligned}
& 13 \times 2 \\
& 13 \times 4 \\
& 4
\end{aligned} \text { no point making a table }
$$

Ex: $\begin{array}{r}\left.\begin{array}{r}82 \\ 19558 \\ -152 \\ 38 \\ \frac{38}{0}\end{array}\right) \\ \end{array}$ How many 19's in 155?

Estimate:

$$
2 0 \longdiv { 8 }
$$

Calculate: $19 \times 8=160-8=152$

Ex 3: $\quad 2 8 \longdiv { 2 0 7 6 }$

How many 28's in 2076?
Let's relate to 1-dizit fact by rounding!

After each distribution do:
Check: is 0 s remainder < divisor?
yes- "make change" -i e-shift place value, bring down next digit, repeat. no- Revise quotient by *try again, or *add ± 1 copy of divisor

Answer 80 R15

$$
\text { Ans: 85 R23 } \begin{array}{cc}
3 \\
& 77 \\
\times 5 \\
\hline 385
\end{array}
$$

Long division is self-correcting - can always subrtact a bit more:

Ex $6:$
4
$\frac{33}{138}$
$\frac{-78}{35}$
$\frac{26}{98}$
$\frac{78}{20}$$\quad$ check - too biz!

Ans. 43 R2O

Ex 7: (individual 1 min) Finish

$$
\begin{gathered}
5 \\
4 3 \longdiv { 2 5 9 4 } \\
-215
\end{gathered}
$$

Hw Do Problem set 15. Bring textbook \& PM 6A

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
4.1 - Prealjebra

* Algebra is generalized arithmetic - we just use letters as names for numbers and rearrange as before.
* In school algebra evolves from arithmetic.
*Say/Discuss:
*Algebra isn't a new or different subject!
Just quicker \& more flexible way to do arithmetic.
* Sometimes students see no algebra until grade 7 or 8 and it is introduced as a new subject (was it that way for you??) Better to slowly introduce use of letters in arithmetic problems in elementary school.
use of letters ("prealjebra") not hard:
Ex 1:

$$
\begin{aligned}
& \left.\begin{array}{l}
7+\ldots=12 \\
7+?=12 \\
7+x=12 \text { what is } x ?
\end{array}\right\} \quad \begin{array}{l}
\text { clearly the same. } \\
\text { say: can easily be } \\
\\
\\
\\
\text { understood by } \\
\text { elementary students. }
\end{array}
\end{aligned}
$$

Ex 2: (Russian grade 2) What do the letters stand for?

$$
\begin{aligned}
& k-17=28 \\
& 45 \div c=5
\end{aligned}
$$

Also gives an alternate way to solve problems.
Ex 3: Kate bought 3 books ξ a magazine for a total of $\$ 25$. If the magazine cost twice as much as each book, find the cost of one book.

2 Teacher Solutions:
using diagrams

5 units $=25$
1 unit = 5
Each book cost $\$ 5$.
using algebra
Let $b=$ cost of books in dollars
meaning
of letter cost of magazine $=2 b$
clearly cost of 3 books $=3 b$
identified
Total

$$
\left.\begin{array}{rl}
3 b+2 b & =25 \\
5 b & =25 \\
b & =5
\end{array}\right\} \begin{aligned}
& \text { steps clearly } \\
& \text { shown in } \\
& \text { order }
\end{aligned}
$$

Each book cost $\$ 5$. \qquad answer statement.
say: you will be asked to give such alg. solutions on HW - this is what I expect.

Compare: *same reasoning
$(b \leftrightarrow 1$ unit)
say: diagram is easier for problem with small numbers, but if you had 130 books \& 48 mag's the diagram is harder $\&$ alg the same
caution: Letters stand for numbers.

say: In word problems (ξ real life) we usually deal with quantities = number ξ unit. Letters stand for numbers, so you must still specify the unit.

Ex: He drank x cups of water - good
He drank x water \qquad bad

Expressions:
Have students read def's on pg 89 EMT
Note: *Like complete sentences
*notation change: " 3 times x " now $3 \cdot x$ or $3 x$
*key feature: expression can be evaluated by replacing letters by numbers.
$3 x+5 \sim 17$
let $x=4$

Teach expressions by:

* building expressions
* word pr ab
* simplify
bA pg 6
*Go over pg 6 - example of building an expression.
*Read How problem \#9 set 16. (will start it now)
PM pg 7

1. a) 13
b) $x+8$
this is how
2a) $10-2=8$
b) $m-2$

HW should
3. a) $w-5 k j$
b) $8-5=3 \quad E$
look.
*Assign 4-9 to each table of students. Give 2 min. call on students for answers.

Ask: How many different letters used? Any letter can represent a number.

Note: notation changes

$$
\begin{aligned}
& 6 \times 3 \longrightarrow 6.3 \xi b c \\
& x \div 3 \longrightarrow x / 3
\end{aligned}
$$

students now know fractions. (we will in ch b)

4 ways to build expressions:

1) Tables - pg $6 \xi 8$ PM $6 A$

Caution: Not all tables lead to expressions
Ex

lIme	Rainfall rate
11 am	$1 / 12^{\prime \prime}$ per hour
12 pm	$1^{\prime \prime}$ per hour
1 pm	$11 / 2^{\prime \prime}$ per hour
2 pm	

No formula say - other examples, stock market, jas prices. can make table, but don't lead to algebra!
2) Set model:
say: models which worked for whole numbers still work for expressions.

n lollypops in each box
Total number of lollypops: $2 n+3$
See: PM bA pg 10 \#10
3) Measurement model:

or scales (weight)
see PM 6A pg 7\#3
4) Rectangular Array:

$$
a\{\underbrace{\sqrt[a \cdot b]{ }}_{b}
$$

(Grade 6: Students know area = product)

HW \#16 \#3,6,9 (different from syllabus)
bring PM 6A
4.1 - Prealjebra - cont.

Last time: * Letter represents number

* Expressions - built by: building expressions word problems simplify and rearrange
* Build by: Table, models

Arithmetic with Expressions:
Ex: $\quad m=$ \# of marbles in a bag
® ® $\quad 000 \longleftarrow 4 m+3$
Add:
『 \quad 『 $\longleftarrow 2 m+1$

$$
\begin{aligned}
4 m+3+2 m+1 & =4 m+2 m+3+1 \quad \text { what property? } \\
& =(4+2) m+3+1 \\
& =6 m+3+1 \\
& =6 m+4
\end{aligned}
$$

Subtract: Go over PM 6A pg 13 \#19
So: separately add terms involving m \& those with no m
Say: similar to "add ones \& tens separately"
Don't need pictures:

$$
\begin{aligned}
4 k+9-3 k+4=(4 k-3 k) & +(9+4) \\
(4-3 k & +13 \\
k & +13 \\
k & +13
\end{aligned}
$$

call on students to answer questions in $1^{\text {st }}$ column of problem 21 (PM GA P 13)

* increased complication
* no pictures

Def: An equation is a statement that two expressions are equal.
Ex: $12 x-3=33$ can solve
$x 2+y 2=22$ can't solve
Prerea: meaning of " $=$ " (say: seems obvious but often misunderstood)

* Diagnostic test: $\quad 3+9=\ldots+8$
common answer 12 for students who think " $=$ " means "compute" NO! (say: comes from by seeing problems ending in "=")

two sides are the same number.

Teaching Remark: Never "run equality signs"
$3 \cdot 4+8-2$

$$
3 \cdot 4=12+8=20-2=18
$$

Recopy: $3 \cdot 4+8-2=12+8-2=20-2=18$

Types of Equations
(1) $\ln x+3 x=96 \quad$ we can solve for x.
(2) $y=t+3$ cannot be solved, shows relationship between $+\xi y$
(3) $4 m-m=3 m$ true for all values of m, called identities

Remaining time:

(1) Bargraph activity
(2) Do mental math $1 \& 2$ from HW \#16
finish Hw set 16.
.
4.2 - Identities, Properties, Rules
what to bring to class: Ask students to bring PM $4 A$ and $5 A$.

Algebraic Identities are equations which are true no matter which numbers their letters represent.

$$
3 x+8 x+5-2=11 x+3
$$

Teaching sequence: Ex: Commutative Prop

1) Principle - we can add in either order
2) Examples - $3+5=5+3$ etc
3) Precise Statements - $a+b=b+a$ for whole \#'s $a+b$.

- without algebra we cannot say exactly what we want to.
say: algebra is sometimes needed as a language to talk about arithmetic; necessary teacher knowledge.

Arithmetic Properties: For any whole numbers a, b, c

1) Commutative $\Rightarrow a+b=b+a$ or $a b=b a$
2) Associative $a+(b+c)=(a+b)+c$ or $a(b c)=(a b) c$
(1) \& (2) any order property, but no precise way to say
3) Distributive $a(b+c)=a b+a c$.
4) Additive \& multiplicative Identities: $a+0=a$ a $1=a$
These are still statements about numbers!

Arithmetic Properties are foundational identities:

* describe basic ways numbers behave
* all other identities can be derived from them.

From Arithmetic Prop get:

1) Rules $=$ identities so simple ξ useful that they are worth memorizing. say: "Rule" means "without exception" not "prescribed law"
Ex: $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c} \quad$ "invert ξ multiply" (ch b)

$$
(-a)(-b)=a b \quad(\operatorname{ch~} 8)
$$

2) Others - not worth memorizing

$$
\text { Ex: } \begin{array}{rlrl}
6 k(5 x+3)+2 k x & =30 k x+18 k+2 k x & D P \\
& =30 k x+2 k x+18 k & \mathrm{com} \\
& =(30+2) k x+18 k & D P \\
& =32 k x+18 k
\end{array}
$$

In prealzebra identities are obtained from:

* models
* Examples

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a d}{b c} \longleftrightarrow \frac{1}{3} \div \frac{4}{7}=\frac{7}{3.4}
$$

generalize it.

* derived from properties.

Ex: $\quad(a+b)^{2}$

Step 1: Find $11^{2}=(10+1)^{2}$

$$
11^{2}=(10+1)^{2}=100+2 \cdot 10+1=121
$$

Similarly:

$$
\begin{aligned}
& 21^{2}=(20+1)^{2}=400+2 \cdot 20+1=441 \\
& 41^{2}=1600+2 \cdot 40+1=1681 \\
& 61^{2}=
\end{aligned}
$$

Step 2: Find $(a+b)(a+b)$

$$
\begin{array}{rlrl}
(a+b)(a+b) & =(a+b) a+(a+b) b & D P \\
& =a^{2}+b a+a b+b^{2} & D P \\
& =a^{2}+2 a b+b^{2} & C P
\end{array}
$$

Mental math $(32)^{2}=(30+2)^{2}=900+2 \cdot 60+4=1024$

$$
(24)^{2}=400+2 \cdot 80+16=576
$$

students try
30 sec .
A
Ex 2: $(a+b)(a-b)=a^{2}-b^{2}$
mental math use: Given $a+b \xi a-b$

Ex:

$$
6 \times 8=7^{2}-1^{2}=49-1=48
$$

average distance

of $6 \leqslant 8$ from average

$$
\begin{aligned}
9 \times 7 & =8^{2}-1^{2}=63 \\
8 \times 12 & =10^{2}-2^{2}=96 \\
14 \times 16 & =15^{2}-1^{2}=225-1=224 \\
38 \times 42 & =40^{2}-2^{2}=1600-4=1596 \\
13 \times 17 & =15^{2}-2^{2}=221
\end{aligned}
$$

special case of "double distributive property"

$$
\text { Ex: } \begin{aligned}
(a+b)(c+d) & =(a+b) c+(a+b) d \\
& =a c+b c+a d+b d \quad D P
\end{aligned}
$$

Do not use "FOIL" (say: first, outer, inner, last) Does not generalize $\quad(a+b+c)(x+y)=$? Students should learn Distributive Property!

HW Read 4.2. Do HW \#17

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
4.3 - Exponents
say: Just notation!
write $2^{n}=\underbrace{2 \cdot 2 \cdot 2 \cdots 2}_{n \text { times }}$
n times

Ex: $\quad 2^{5}=32$

$$
2^{8}=256
$$

$$
2^{10}=1024
$$

Consequences of Definition:

$$
\text { Ex: } \begin{aligned}
2^{3} 2^{7} & =(2 \cdot 2 \cdot 2) \cdot(2 \cdot 2 \cdot 2 \cdots 2) \\
& =\text { product of } 102^{\prime} s \\
& =2^{10}
\end{aligned}
$$

$$
\text { Rule 1: } a^{n} \cdot a^{m}=a^{m+n}
$$

say: Just counting the number of factors

Mental math: $32 \times 64=2^{5} \cdot 2^{6}=2^{11}=2^{10} \cdot 2=1024 \cdot 2=2048$

Ex: A germ cell divides every hour. how many cells in 36 hours?

$$
2^{36}=2^{10} \cdot 2^{10} \cdot 2^{10} \cdot 2^{6}=1024 \cdot 1024 \cdot 1024 \cdot 64 \approx 7 \text { billion }
$$

\square compensation!

EX: $\quad 2^{5} \div 2^{2}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2 \cdot 2 \cdot 2=2^{3}$
2.2

$$
2^{19} \div 2^{13}=\frac{19}{2 \cdot 2 \cdots 2}=\underbrace{2 \cdot 2 \cdots 2}_{6}=2^{6}
$$

Rule 2 $\quad a^{m} \div a^{n}=a^{m-n} \quad$ when $a \neq 0, m \geq n$
In general:

$$
\begin{array}{rlr}
a^{m} \div a^{n} & =\frac{a^{m}}{a^{n}} & \text { fraction } \\
& =\frac{\overbrace{\frac{a}{a} \cdot a \cdot \frac{m-n}{a \cdots a}}^{n}}{n} & \text { def } \\
& =\underbrace{a \cdots a}_{m-n} & \text { simplify } \\
& =a^{m-n} & \text { def }
\end{array}
$$

fraction notation

Teaching Aside: what is $x^{2}+x^{3}$?
common mistake: x^{5}.
In fact, doesn't simplify. Exponential rules apply only when x and $\div\left(n_{0}+, \rightarrow\right)$
and are just counting factors.
Ex: $\quad\left(2^{3}\right)^{4}=\frac{2^{3} 2^{3} 2^{3} 2^{3}}{122^{1} \varepsilon}=2^{12}=4096$

Rule 3 $\quad\left(a^{m}\right)^{n}=a^{m n} \quad$ for $a \neq 0 \quad m, n$

$$
\begin{array}{rlrl}
\left(a^{m}\right)^{n} & =\underbrace{a^{m} \cdot a^{m} \cdots a^{m}} & \text { Def } \\
& =a^{m+m+m+s} & & \\
& =a^{m n} & \text { Rule } 1 \\
& \text { Def of mult. }
\end{array}
$$

Ex: | $2^{3} \cdot 5^{3}$ | $=2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5$ | | def |
| ---: | :--- | ---: | :--- |
| | $=2 \cdot 5 \cdot 2 \cdot 2 \cdot 5 \cdot 5$ | | $C P$ |
| | $=2 \cdot 5 \cdot 2 \cdot 5 \cdot 2 \cdot 5$ | | $C P$ |
| | $=(2 \cdot 5)(2 \cdot 5)(2 \cdot 5)$ | | ASSOC. |
| | $=(25)^{3}$ | | |

Rule $4 \quad a^{m} b^{m}=(a b)^{m}$
"When two bases have same exponent, we can form pairs"

$$
\begin{array}{rlrl}
a^{m} b^{m} & =\underbrace{(a \cdots a)}_{m} \underbrace{(b \cdots b)}_{m} & & \text { def } \\
& =\underbrace{(a b)(a b) \cdots(a b)}_{m} & & \text { Any -order } \\
& =(a b)^{m} & \text { def }
\end{array}
$$

These 4 rules are statements about numbers.

Ex: (similar to HW)

Simplify $\frac{2^{5} \cdot 6^{2} \cdot 18^{2}}{3^{4} \cdot 4^{2}}$

Idea: factor into only $2^{\prime} s \xi 3^{\prime} s$, then count up total of $2^{\prime} s \xi 3^{\prime} s$.

$$
\begin{aligned}
=\frac{2^{5} \cdot(2 \cdot 3)^{2} \cdot(2 \cdot 3 \cdot 3)^{2}}{3^{4} \cdot(2 \cdot 2)^{2}}=\frac{2^{5} \cdot 2^{2} \cdot 3^{2} \cdot 2^{4} \cdot\left(33^{2}\right.}{3^{4} \cdot 2^{4}}=2^{5} \cdot 3^{2} & =32 \cdot 9 \\
& =320-32 \\
& =288
\end{aligned}
$$

What about 5° ?
Pattern:

Guess $5^{\circ}=1 . \quad$ is this consistent with Rules 1-4?
(1) $5^{0 .} \cdot 5^{m}=5^{0+m}=5^{m}$
only if $5^{\circ}=1 \checkmark$
(2) $5^{0}=5^{m-m}=\frac{5^{m}}{5^{m}}=1$
$\begin{array}{ll}\text { (3) } & \left(5^{\circ}\right)^{m}=5^{0 . m}=5^{\circ} \\ \text { (4) } & 5.77^{\circ}\end{array}=5^{\circ} \cdot 9=1 \cdot 1=1 \quad 1$ is only \# so that $\underbrace{1 \cdot 1 \cdots 1}_{m}=1 \rightarrow 5^{\circ}=1$.
completely consistent! so ok to define $a^{\circ}=1$ for all $a \neq 0$.
What about 0° ?
Patterns: $\quad 3^{0}=1 \quad 0^{3}=0$

$$
\begin{array}{ll}
2^{0}=1 & 0^{2}=0 \\
1^{0}=1 & O^{1}=0 \\
\mathcal{O}^{0}=\ldots & \mathcal{O}^{0}=-
\end{array}
$$

* Suzgests can't define 0° consistently.
*If we want $a^{m-n}=a^{m} \div a^{n}$ then $O^{\circ}=O^{1-1}=0 \div 0$ undefined!
5.1 - Even/Odds - Intro to Proofs

Ask students to write down their definition of "even number."
Explain why even + even = even using their definitions.
compile list of defs
4 different definitions of even number:
a) a number which occurs by skip-counting by 2 (good to introduce)
b) an even number of objects can be paired up with no remainder (visual, used in pic proofs)
c) a number which is twice a whole number (can be represented as $2 n$ for some whole $\# n)$ (general, used in alg proofs)
d) a number whose last digit is $0,2,4,6$, or 8.
say: to adults all 4 seen the same \& are part of our notion of "even." But thery are different ((d) depends on decimal notation). Children must learn all 4 one at a time ξ link them. (Teaching ξ math exercise)
Ex: 3574 even? check with different def's. which is easier?

Links:
$(a) \Longrightarrow(b)$

*add new pair at each step
*none left \Longrightarrow even
1 left \Longrightarrow odd
links def. 1 to def. 2

$$
(b) \Longrightarrow(c) \quad \begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \leftrightarrows 2 \text { groups of } 4
$$

links def: 2 to def. 3
$(a) \Longrightarrow$ (a) count $w /$ no skips 1234 doubles \Longrightarrow skip counting
will do (d) later - see PM. 4A pg 25 for early connection for $a \Leftrightarrow d$.

Array Pictures: (for cleaver/simpler pics)

Simple Proofs:

\longleftarrow meaning of dots. not a pic of one odd number, it is a schematic for all odds.

Def. A proof is a detailed explanation of why a mathematical fact is true * follow from basic rules of reasoning \leftarrow same goal as teaching

* communicate - everything in math makes sense.
* Theorems - are proven fact
* Lemmas -simple theorems which are used repeatedly.

Proofs start with "Proof:" and end with " \square "

Ask students about their experiences in high school.
Remember proofs $=$ explanations.
Proofs in Elementary school - informal, done with models, pics, numbers.
Theorem 1: The sum of two even number is even.
Proof: (picture)

Proof (algebraic) Two even numbers can be written as

$$
\rightarrow \text { ask: def }(c)
$$

$2 k$ and 21 Then
$2 k+21=2(k+1) \quad$ Distributive Property (ask)
is even by def (3)

Theorem 2: "even + odd = odd"
The sum of an even number and an odd number is odd.
Proof: (picture)

even \#

odd \#

Proof: (Algebraic)

Given an even number $2 k$ and an odd number $21+1$

$$
\begin{aligned}
2 k+(21+1) & =(2 k+21)+1 & & \text { Associative Property } \\
& =2(k+1)+1 & & \text { Distributive Property }
\end{aligned}
$$

is odd.

* These are real proofs!

Say: Reasoning is clear. Note: Pictures become awkward when they involve large numbers or arbitrary numbers.

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
5.2 Divisibility Test [day lecture]

All letters $A, a, b, k, 1, m$ represent whole numbers >0.

Def A is divisible by k means k divides into A wo remainder, ie., there exists a quotient q such that $A=k \cdot q$.

If $A=k$. (some whole \#) we can say:

* k divides A
* k is a factor of A
* k goes into A evenly
* A is divisible by.
[SAY: All are equivalent]
Examples

1. 3 divides 21
2. 75 is divisible by 5
3. 16 goes into 1024
4. 3 is not a factor of 14

$$
=2^{10} \div 2^{4}=2^{6}=64 \text { times) }
$$

we can model "A is div. by k" by

A is div. by

Notation 1 I A used in higher math, we do not need it however.)

Ex Note 16 is di. by 4. What other \#'s are?

$16+(0)$	V
$16+1=17$	x
$16+2=18$	x
$16+3=19$	x
$16+(4)=20$	V
$16+5=21$	x
$16+B$	

$$
\begin{cases}\sqrt{V} & \text { if } B \text { is div. by } 4 \\ x & \text { if } B \text { is not div. by } 4 .\end{cases}
$$

(Think 16) (think 4) (2 $2^{\text {nd }}$ column) (3 ${ }^{\text {td }}$ column)
Statement (1): Suppose A is div. by k. If B is divisible by k $\underset{\substack{\text { menus then' } \\ \text { or implies' }}}{\longrightarrow}(A+B)$ is dix by k

Now look at sums which equal 28 (which is div. by 4) When is one of the addends div. by 4 . when is the other?

$$
\begin{aligned}
& 28=0+28 \\
& 28=1+27 \\
& 28=2+26 \\
& 28=3+25
\end{aligned}
$$

$$
28=A+B \quad \begin{cases}\checkmark & \text { when } A \text { is, then } B \text { is too! } \\ x & \text { neither are! }\end{cases}
$$

Statement (2): suppose A is dr. by k If $A+$ Bis divisible by \Longrightarrow Bis also dir. by k.
we combine statements (1) and (2) by using \longleftrightarrow :
[say: "if and only if"]
Division Lemma: suppose A is div.byk. Then B is di. by $k \Leftrightarrow A+B$ is div.byk
[write only \Longrightarrow up first, then read the last sentence backwards to get statement (2), filling in the "(" as you read it out loud]
[SAD: For theorems with \Leftrightarrow in the statement, we must prove both directions]]

Picture proof: " \longrightarrow " A is dr.byk. $B i s$ dr.byk $\longrightarrow A+B i s$ also

$$
\begin{aligned}
& k\left\{\begin{array}{|c}
A
\end{array}+k\left\{\begin{array}{|c}
A+B
\end{array}\right]\right. \\
& \text { "A is div. by k" } \quad \text { "Bis dr. by k" the sum must also! }
\end{aligned}
$$

"ц" If A and $A+B$ are dr. by, then B is also.

B must have k rows so it is div. by k!

Algebraic Proof:
A is di.byk means $\quad A=k \cdot a$ for some a.
" \Longrightarrow " If B is div. by k, then $\quad b=k \cdot b$ for some b.
Hence $(A+B)=k \cdot a+k \cdot b=k(a+b) \quad$ think $=" k \cdot$ (some whole number $) "$ substitution distributive property
By definition $A+B$ is div.byk
" \Longleftrightarrow " If $A+B$ is di. by k, then by definition $A+B=k \cdot m$
for some whole \# m. then

$$
\begin{aligned}
B & =(A+B)-A=k \cdot m-k \cdot a \\
& =k(m-a)=k \text { (some whole \#) }
\end{aligned}
$$

Hence Bis div.byk.
[When doing the algebraic Proofs, label the columns in the picture proofs by a, b, m respectively.]

HW Read 5.2 do problems 1-5 of How set 19.
[Day 2]
The Division is very powerful.

Ex \quad ls 384 divisible by 6 ?

$$
\left.\begin{array}{r}
360 \mathrm{is} \\
24 \mathrm{is}
\end{array}\right\} \xrightarrow{384 \text { is ! }} \begin{array}{r}
\text { Div. Lemma }
\end{array}
$$

Ex is 454 divisible by 9?

$$
\left.\begin{array}{c}
450 \text { is } \\
4 \text { isn't }
\end{array}\right\} \underset{\text { Div. Lemma }}{\Longrightarrow 454 \text { isn't. }}
$$

There are quicker ways to test for divisibility:
Divisibility Test: A number is divisible by
$10 \Longleftrightarrow$ ends with 0
$5 \Longleftrightarrow$ ends with 0,5
$2 \Longleftrightarrow$ ends with $0,2,4,6,8$
$4 \Longleftrightarrow$ last 2 digits are div. by 4
$8 \Longleftrightarrow$ last 3 digits are dix by 8
$3 \Longleftrightarrow$ sum of its digits are div by 3
$9 \Longleftrightarrow$ sum of its digits are dix by 9
$11 \Longleftrightarrow$ if the difference between odd-position and even-position digits is dr. by 11
Examples:
(1) is 8176 div. by 2 ? by 4 ? by 8 ?
(2) is 11,265 dix by 3 ? by 9 ?
(3) Which divides 84,570?
(2) (3) 4 (5) 8 व (10)
(4) $15874,256,921,832$ dix by 3,9 ?

Tip: "Cast out 9's"
$814,2566.921 .8332 ?$
$8+2+2=12\left\{\begin{array}{l}\text { div. by } 3 \\ \text { not by } 9\end{array}\right.$
(5) 1587365 div by 11 ?

$$
\begin{align*}
(8+3+5) & =16 \\
(7+6) & =-13 \tag{3}
\end{align*}
$$

not div. by 11
$\Longrightarrow 87365$ not diN. by 11 .
(but 87395 is: why?)
Why are div. test true? Use the Division Lemma.
[write the following template on the board w/o the blanks, and doing the test for 2 at the same time.]
[Template: use lots of space!]
Proof of the test for 2 :
By place value, any number n can be written

$$
n=\frac{10 a+b}{\uparrow}
$$

This \# is
This is the test \#, ie,
2(5a), so it
it is the last digit.
is div. by 2 .
By the Division Lemma.

$$
\begin{aligned}
n \text { is di. by } 2 & \Longleftrightarrow \text { bis div. by } 2 \\
& \Longleftrightarrow b=0,2,4,6,8
\end{aligned}
$$

[If you have to, give numerical examples along the way. For ex, write:

$$
124=\frac{12}{a} \times 10+\frac{4}{b} \text { and so forth.] }
$$

[Tell them that all other proofs are similar.

1. Use place value to break \# into the test case and a \# which is div. by test \#, and 2. Apply Division Lemma.]
[Then do repeatedly erasing the blanks and filling in with new proof:]

Fast: Erase and fill in proofs for 5 and 10 - tell students not to copy them down.
Slow: Give time for them to recopy template, Fill in proof for test for 4.

$$
\prod_{4(25 a)}^{n=100 a+b} \text { last } 2 \text { digits }<100
$$

Fast: Same for 8

Slow: Give time to recopy template. Fill in proof for 3 (using 3 digit \# abc)

$$
\begin{aligned}
n & =100 a+10 b+c \\
& =(99 a+a)+(9 b+b)+c \\
& =(99 a+9 b)+(a+b+c) \\
& \text { sum of digits }
\end{aligned}
$$

$9(11 a+b)$

Fast: Same for 9 .
slow (very slow)
Test for $11, n$ with digits $a b c d$

$$
\begin{aligned}
& n= 1000 a+100 b+10 c+d \quad \text { P.V. } \\
&=(1001 a-a)+(99 b+b)+(11 c-c)+d \\
&=(1001 a+99 b+11 c)+\left(-a+\frac{b}{\uparrow}-c+d\right) \\
& \\
& 11(91 a+9 b+c) \\
& \text { test case } \\
& \text { is div.by11 } \\
& \text { bod) }-(a+c) \\
& \text { "odd" - "even" }
\end{aligned}
$$

HW Read $\varepsilon 5.2$ again, do the rest of HW set 19 [do not tum in previous work]

A factorization of a number n is a way of writing it as the product of 2 or more numbers:

$$
\begin{aligned}
& n= a \times b \\
& \uparrow \uparrow \\
& \text { factors }
\end{aligned}
$$

EX

$$
\begin{aligned}
12 & =3 \times 4 & & \\
& =2 \times 6 & & \text { All factors of } \\
& =2 \times 3 \times 2 & & 12 \\
& =12 \times 1 & & 1,23,4,6,12
\end{aligned}
$$

Every whole number n has "trivial" factors 1 and n.
Def A whole number $n>1$ is prime if its only factors are 1 and n. If it has at least one other factor it is composite.
[say: O and 1 are neither prime nor composite].
[Do some examples of prime and composite].

To find primes, use the "Sieve of Exatosthenes" (Exa - toss - thin - e's)

Eirst person to estimate the Earth's circumference, tilt, size, and distance from earth to the sun and moon. - 3rd century $B C$.]

1314 收 1/2
17 Y 19
$20 \quad 21 \quad 22 \quad 23$
84
$25 \quad 26$
21 2
293031
32 3
34 35 36.

Note after circling 5 and crossing out multiples, the rest are prime. Important for HW]
Repeated factoring gives a factor tree

Going as far as possible yields prime factorization - a factorization as a product of primes.
written

$$
n=p_{i} \cdots \cdots p_{k} \quad \text { (or } n=p_{1} \text { when } n \text { is prime) }
$$

Ex

31
prime

Fundamental theorem of Arithmetic. Every whole number except O, D is either prime or a product of primes. Furthermore, each whole \# has only one prime factorization.

Elementany school Proof Suppose we listed every \# up to some veally large number and found that they all had prime factorizations.

Does that large number also have a prime factorization?

- If it is a prime - no problem, put it on our list and look at the next larger \# - If not it is the product of 2 smaller numbers - which are on our list - each have prime factorizations.
multiplying the two prime factorizations gives a prime factorization for the large number.

In either case we can put that large \# on our list and look at the next number. By the same argument, we can put that \# on our list as well. Explain whyd

Each time we put a number on our list, it helps us to explain why we can put the next number on the list as well.

Thus our list grows until it contains every whole number!

Proof (using different logic)
walk along the \#-line. Fut a \checkmark over each number which is prime or a product of primes.

suppose some \#'s can't be checked Let n be the samllest of those numbers.

n is not prime $\Longrightarrow n$ is composite and must factor: $n=a \cdot b$ where a and b are smaller and checked. Each can be written as a product of primes. \longrightarrow
$n=a \cdot b=\begin{gathered}\text { product of } \\ \text { primes }\end{gathered}$ product of
n can be checked, but we said it couldn't be!
contradiction (something is wong)
The only possibility: Our assumption that some \#'s can't be checked is wong \Longrightarrow all of them can be!

HW Read S5.3 and do HW set 20.

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.

5.4 More Primes

[say: In todays class we put together the divisibility test with the Fundamental Theorem of Arithmetic (FTA)]

Test Primality

To test if a number n is composite or prime:
$1^{\text {st: }}$: Need only check for prime factors.

$$
\text { If } n \text { is composite, } \quad \begin{aligned}
n & =P_{1} P_{2} \ldots P_{k} \quad \text { (by FTA) } \\
& =P_{1} \cdot(\text { some whole \#) } \\
& \Rightarrow n \text { has prime factor. }
\end{aligned}
$$

[say: This is obvious if n is divisible by 6, then it must be divisible by 2 and 3.]

2n: Need only check primes up to \sqrt{n}.

Ex Factors of 36:

$2=$ smallest P.F. $\leq \sqrt{36}$

Ex What is 13×17 ?

$$
221 \quad \mathrm{~mm}: 15^{2}-2^{2}
$$

Factors of 221:

\square

$$
13=\text { smallest P.F. } \leq \sqrt{221} \approx 15
$$

Guess: $\quad 1<$ smallest P.F. $\leq \sqrt{n}$
check: $n=P_{1} \cdot P_{2} \cdot P_{3} \ldots P_{k}$ by FTA
Assume P_{1} is smallest P.F.
Then

$$
\begin{aligned}
& \quad n=P_{1} \cdot P_{2} \ldots P_{k} \geq P_{1} \cdot P_{2} \geq P_{1} \cdot P_{1} \\
& \Rightarrow n \geq P_{1}^{2} \Rightarrow \sqrt{n} \geq P_{1}
\end{aligned}
$$

\Rightarrow At least one factor of a composite \# must be $\leq \sqrt{n}$. If not, n is prime.

Primality Test: To test if a number n is prime, one need only search for prime factors p of n with $p \leq \sqrt{n}$

Ex $1 s 163$ prime? Estimate
$\sqrt{163} \leq \sqrt{169}=13$

yes 163 is prime

Ex $\quad 1 \& 1001$ prime? $\quad \sqrt{1001} \leq \sqrt{1032}=\sqrt{2^{0}}$

$$
=2^{5}=32
$$

Division Lemma.

No. 1001 is not prime!

The number of primes.

Have students do the following exercise:

$$
[3-4 \mathrm{~min}]
$$

Create a handout (using mathematica, etc.) of all primes up to 2000. Ask them to count the \# of primes in each of the intervals: $0-250,251-500,501-750.751-1000,1001-1250$. $1251-1500.1501-1750.1751-2000$.

Have them zenerate this table:

Interval	\# of primes
$0-250$	50
$251-500$	42
$501-750$	37
$751-1000$	36
$1001-1250$	36
$1251-1500$	35
$1501-1750$	33
$1751-2000$	31

Ask:

- Is the \# of primes increasing or decreasing?
- make a conjecture about the \# of primes.

The idea, of course, is to get them to say that there are a finite \# of primes.

Then draw:

[say: Furthermore, Hw 4 in todays Hw shows that for any \# n, there is n consecutive \#'s which are not prime. There seems to be a lot of evidence for a finite number of primes]

Tell students to put space here...
conjecture: There are a finite \# of primes. If so, list them in order:
$2,3,5,7,11, \ldots \ldots \ldots P$
\underbrace{P} greatest prime.
and consider
$N=2 \cdot 3 \cdot 5$ Р) +1

By FTA, since $N>1$ it is prime or a product of primes, But it can't be prime since $N>P$. largest prime

Since it is a product of primes some prime $p>1$ in the list $23, \ldots$. P must divide N.

Since $2 \cdot 3 \ldots \ldots$ P and N are div by P, the division lemma $\Rightarrow 1$ is div. by P.
\uparrow
contradiction because $p>1$.
[say: our conjecture must be wrong! the opposite must be true]

There are an infinite \# of primes.
[Now, go back and fill in "Theorem [Euclid]: There are an ," before conj., erase "conjecture:" and replace with "Proof: suppose," then put box \square.

This type of proof is called "Proof by contradiction." It is useful in teaching as well: [say:

Jimmy states " $(a+b)^{2}=a^{2}+b^{2 n}$
Tell Jimmy if this is true, then

something must be wrong with your formula]

How Read es 5:4 Do How set 21.

 0 m

> Count the number of primes in each
of these intervals:
conjecture: there are number of primes.

make a conjecture about the possible number of primes based upon your observation above. Does it look like there are infinite number of primes, or a finite number?

What to bring to class: Ask students to bring PM $4 A$ and $5 A$.

5.5 GCF and LCM.

The greatest common factor is its own definition, i.e., list all of the common factors of 2 numbers and take the largest.

Ex GCF of 36 and 84

Factors of $36: \quad 1,2,3,4,6,9,12,18,36$
Factors of $84: 1,2,3,4,6,7,12,14,21,28,42,84$
$\operatorname{GCF}(36,84)=12$

Easier way: Prime factor both numbers. Then pair common factors.

$$
\begin{aligned}
& 36=\overbrace{2}^{2} \cdot\left(\begin{array} { l }
{ 2 } \\
{ 2 } \\
{ 2 }
\end{array} \cdot \cdot \left(\begin{array}{l}
3 \\
3
\end{array} \cdot\right.\right.
\end{aligned} \cdot 3
$$

Bizzest \# which
divides both. $=2 \cdot 2 \cdot 3=12$

The Least common multiple (LCW) is also its own definition.

1s: Find common multiples.
$2^{\text {nd }}$: Take the smallest.
Ex Find LCM of 16,24. (students do)
multiples of $16: 16,32,48,64,80,96,112 \ldots$
multiples of $24,24,48,72,96,120,144$
smallest!
$\operatorname{LCM}(16,24)=48$.

Easier way:

\#1 Prime factorization
\#2 Pair prime factors
\#3 Multiply pairs with extra primes

$$
\left.\begin{array}{l}
16=\underbrace{24}_{\text {pairs }} 2 \begin{array}{l}
2 \\
2
\end{array}) \cdot\binom{2}{2} \cdot\binom{2}{2} \cdot 2 \\
2
\end{array}\right\} \text { extra's }
$$

$\operatorname{LCM}(16,24)=\underbrace{2 \cdot 2 \cdot 2} \cdot \underbrace{2 \cdot 3}=48$
pairs extra

Note: $\operatorname{GCF}(a, b) \leq \min (a, b)$
$\operatorname{LCM}(a, b) \geq \max (a, b)$

In fact, one can define GCF and LCM in terms of prime factorization.
Prime factorizations of

$$
\begin{aligned}
& a=P_{1}^{r_{1}} \cdot P_{2}^{r_{2}} \ldots \ldots P_{k}^{r_{k}} \\
& b=P_{1}^{s_{1}} \cdot P_{2}^{s_{2}} \ldots \ldots P_{k}^{s_{k}}
\end{aligned}
$$

[SAD! P's all different from each other. but same for a and b.]

Then $\operatorname{GCF}(a, b)=P_{1}^{\min \left(r_{1}, s_{1}\right)} \cdot P_{2}^{\min \left(r_{2}, s_{2}\right)} \ldots \ldots P_{k}^{\min \left(r_{k} s s_{k}\right)}$

$$
\operatorname{LCM}(a, b)=P_{1}^{\max \left(r_{1}, s_{p} \cdot P_{2}\right.} \max \left(r_{2}, s_{2}\right) \ldots P_{k}^{\max \left(r_{k}, s_{k}\right)}
$$

Ex Find GCF $\&$ LCM of 36 and 84

$$
\left.\begin{array}{l}
36=2^{2} \cdot 3^{2} \cdot 7^{0} \\
84=2^{2} \cdot 3^{1} \cdot 7^{1}
\end{array}\right\} \text { means we put } 7^{\circ}=1 \text { to get same \# of primes }
$$

$\operatorname{GCF}(36,84)=2^{\min (2,2)} \cdot 3^{\min (2,1)} \cdot 7^{\min (0.0)}$

$$
=2^{2} \cdot 3^{1} \cdot 7^{0}=4 \cdot 3=12
$$

$\operatorname{LCM}(36,84)=2^{\max (2,2)} \cdot 3^{\max (2,1)} \cdot 7^{\max (0,1)}$

$$
=2^{2} \cdot 3^{2} \cdot 7^{1}=4 \cdot 9 \cdot 7=9 \cdot 28=280-28=252
$$

Hew Problem in 56 in How set 22 :

Prove that $\operatorname{GCF}(a, b) \cdot \operatorname{LCM}(a, b)=a \cdot b$.
Note that $\min \left(r_{1}, s_{1}\right)+\max \left(r_{1}, s_{i}\right)=r_{1}+s_{1}$.

$\operatorname{GCF}(a, b) \cdot \operatorname{LCm}(a, b)=P_{1}^{\min \left(v_{1}, s_{1}\right)} \cdot P_{2}^{\min \left(v_{2}, s_{2}\right)} \ldots \ldots P_{k}^{\min \left(v_{k} \cdot s_{k}\right)} \cdot P_{1}^{\max \left(q_{1}, s_{1}\right)} \ldots \ldots P_{k}^{\max \left(\theta_{k} \cdot s_{k}\right)}$

$$
=P_{1}^{\min \left(r_{1}, s_{1}\right)+\max \left(r_{1}, s_{1}\right) \cdot P_{2}^{\min \left(r_{2}, s_{2}\right)+\max \left(s_{2}, s_{2}\right)} \cdot \ldots . . P_{k} \min \left(r_{k}, s_{k}\right)+\max \left(r_{k}, s_{k}\right)}
$$

$$
=P_{1}^{r_{1}+s_{1}} P_{2}^{r_{2}+s_{2}} \ldots . P_{k}^{r_{k}+s_{k}} \quad \text { by }(*)
$$

$$
=\left(P_{1}^{r_{1}} \cdot P_{2}^{r_{2}} \ldots \cdot P_{k}^{r_{k}}\right)\left(P_{1}^{s_{1}} \cdot P_{2}^{s_{2}} \ldots \ldots P_{k}^{s_{k}}\right) \quad \text { Power Rule } 1
$$

Any Order
$=a \cdot b$

Hew Problem in 50 in How set 22:

$$
\begin{aligned}
16 & =2^{4} \cdot 3^{0} \cdot 17^{0} \\
102 & =2^{1} \cdot 3^{1} \cdot 17^{1}
\end{aligned}
$$

$\operatorname{GCF}(16,102)=2^{1} \cdot 3^{0} \cdot 17^{0}=2$
$2 \cdot \operatorname{LCM}(16,102)=16 \cdot 102=1600+32=1632$
$\operatorname{LCM}(16,102)=816$.
Note: $\operatorname{LCM}(16,102)=2^{4} \cdot 3^{1} \cdot 17^{1}=16 \cdot 51=800+16$

$$
=816 .
$$

HW Read छ5.5 Do Hw set 22

Give puiz or go over Hw or practice mental math.

II you want, you can show

$$
\operatorname{GCF}(a, a+b)=\operatorname{GCF}(a, b)
$$

and then go on to prove the Euclidean Alzorithm.]
caution - This lecture follows the book EXACTIV
〔 be careful about boring students
Lecture 25 - Fraction Basics

Instructor - photocopy
Prim Wath 2B pgs 52-57
Prim Wath 3B pgs $51-62$
as handout for today's class.
Students Bring PM 4A to class

Fractions used when there is a standard unit but we want to measure using (usually) smaller units called the fractional unit

Ex 4 quarts $=1$ gallon
standard unit: gallon
fraction unit: quart
3 quarts = ?
Notation

> numerator $=$ \# of fractional units denominator specifies the fractional unit; it is the number of fractional units in the standard unit.
[say: Fractional unit usually doesn't have its own name (like "quart" above) It is defined by the denominator.]

Notes

(1) Must know the standard unit (I have $\frac{3}{4}$ water doesn't make sense)

What to bring to class: Ask students to bring PM $4 A$ and $5 A$.
6.1 Fraction Basics

Fractions are used when there is a standard unit, but we want to measure using another (usually) smaller unit called the fractional unit denominator describes the fractional unit; it equals the \# of fractional units in the standard one.

Ex 4 laps around a track $=1$ mile.
std unit: mile
fractional unit: lap $=\frac{1}{4}$ mile
$\frac{3}{4}$ miles $=3$ laps.

Notes

(1) Fractional unit usually does not have its own name (like "lap" above): [SAV: It is defined by the denominator.]
(2) must always know the std. unit. ("I have $\frac{3}{4}$ water," does not make sense.) This notation is confusing. Common Errors:

- Thinking of $\frac{3}{4}$ as 2 numbers not 1 .
- Thinking larzer denominator means larger \#.
($\frac{4}{3} \times \frac{1}{3}$)

1. (Grade 2B) Fractions are introduced informally in grades 1-2 using "one-half",
"3 quarters" and
Area models:

Not 3/4's!
measurement models:

Set models (not so good) $\begin{array}{lll}x & x & x \\ x & x & x\end{array} x$
[Have class look at pages 2B pg 52-57 in Handout (from Sing 2B).]
11. (Grade 3B) Notation with

- Counting

- Comparison. Easy when
denominators same:
-Or-

numerators same:
(Prepares students

for $\frac{3}{x^{2}}>\frac{3}{x^{2}+3}$)

(same \# of smaller units)

Prim math 3B
[Look at Handout pages pg 54-56]
III. (Grade 3B) Renaming fractions. Fractions can be represented in many equivalent ways (numerals)
(a) Fraction strips - [see pages 57-58 of Hand out]
(b) Subdivide areas

[Handout,

Fraction Rule 1: $\frac{a}{b}=\frac{a n}{b n}$ for any whole $\# n>0$.
(c) Transition From picture \Rightarrow abstract

$$
\frac{3}{5}=\frac{\square}{10} ; \frac{2}{3}=\frac{8}{\square}
$$

IV. (Grade 4A) Simple adding and subtracting.

PM. 4A
(a) Same denomination: [see Handout pg 42-43]

2 fifths +2 fifths $=4$ fifths
3 sevenths +2 sevenths $=5$ sevenths
General Principle:
"Once you have the same fractional unit addition is the same as before."
Fraction Rule 2: $\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b}$
(b) Closely related denominators: count using smallest fractional unit.
(i) $\frac{1}{2}+\frac{1}{4}=\frac{2}{4}+\frac{1}{4}=\frac{3}{4}$

(ii) $\frac{2}{3}+\frac{1}{6}=$

$$
=\frac{\square}{6}+\frac{1}{6}=\frac{\square}{6}
$$

(iii) $\frac{4}{5}-\frac{2}{5}$

comparison model.
(iv) $\frac{7}{8}-\frac{1}{2}$

count in $\frac{1^{\prime}}{8} \varepsilon$!

$$
=\frac{7}{8}-\frac{\square}{8}=\frac{\square}{8}
$$

\checkmark word problems. $\frac{4}{5}$ of children in a choir are girls. If 8 are boys, how many children are there altogether?

$$
\begin{aligned}
& 1 \text { unit }=8 \\
& 5 \text { units }=40
\end{aligned}
$$

There were 40 children.
Note that 1 unit $=\underbrace{\frac{1}{5}}$ of the $\underbrace{\text { class }}$
Standard unit fractional unit

HW Read $\varepsilon 6.1$ very cavefully: [Fractions are generally a weak point for prospective teachers.]

Do Hw set 24.
Bring 4A 55 to class

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
6.2 More Fraction Basics

Peter had 400 stamps. $\frac{5}{8}$ of them were Sinazapore stamps and the rest were U.S. stamps. He gave $\frac{1}{5}$ of the Singapore stamps to a friend How many stamps did he have left?
T.S. Friend ?

singapore U.S.

$$
\begin{aligned}
8 \text { units } & =400 \\
1 \text { unit } & =50 \\
7 \text { units } & =350
\end{aligned}
$$

He had 350 stamps.

V1. (Grade 4) Improper and mixed Numbers. pgs:52-57 4A)
Def (i) A mixed number is a whole number plus a fraction: $2 \frac{1}{8}, 7 \frac{3}{5}$
(think: $2+\frac{1}{8}, 7+\frac{3}{5}$)
(ii) An improper fraction is a fraction $\frac{a}{b}$ with $a \geq b$, Ex. $\frac{17}{4}, \frac{12}{7} \leftarrow$
mixed numbers $\stackrel{\text { convert }}{\longleftrightarrow}$ Improper Fractions.
Examples:
(1) $\frac{15}{4}=\frac{4}{4}+\frac{4}{4}+\frac{4}{4}+\frac{3}{4}=3 \frac{3}{4}$

(2) $4 \frac{2}{3}$ is how many thirds?

14 thirds or $\frac{14}{3}$?
This is the same as $\frac{3 \times 4+2}{3}=\overbrace{4}^{\frac{+}{3}}$

$$
\begin{aligned}
& =\frac{3 \times 4}{3}+\frac{2}{3} \\
& =\frac{3 \times 4+2}{3}
\end{aligned}
$$

VII. Fractions from division
[SAY: use word problems!]
7 children want to share 4 cookies.
How many should each get?
[ASK: $1 s$ this partitive or measurement div?]

Divide each cookie into sevenths $\Rightarrow 4$ whole cookies $=28$ seventh \Rightarrow s
\Rightarrow Each child gets $4 \div 7=28$ sevenths $\div 7=4$ sevenths

$$
\frac{4}{7} \text { cookies each!! }
$$

This implies $4 \div 7=\frac{4}{7}$.
Hence
Fraction Rule $3: a \div b=\frac{a}{b}$
This shows equivalence of the following:

we can't add fractions until we have the same fractional unit. For unlike denominators, we need to rename both fractions.

1. Pictoral Approach
(a) $\frac{1}{2}+\frac{2}{5}$

$$
\sum_{\text {unit }=\frac{1}{2} \quad \text { unit }=\frac{2}{5}}
$$

Big box is Std. unit.
chop both ways to
get common unit $\frac{1}{10}$.

$$
\frac{5}{10}+\frac{4}{10}=\frac{9}{10}
$$

(b) $\frac{2}{3}-\frac{2}{7}$ [student's do]

$$
\begin{aligned}
& \prod-\sum=\square \\
& \frac{2}{3}-\frac{2}{7}=\frac{14}{21}-\frac{6}{21}=\frac{8}{21}
\end{aligned}
$$

Note: Pictures show common unit = product of denominators.
(maybe not most efficient)
(2) Abstract Approach.

$$
\frac{3}{8}+\underbrace{\frac{1}{6}=}_{\text {rename }} \frac{9}{24}+\frac{4}{24}=\frac{13}{24}
$$

$$
\operatorname{LCM}(8,6)=24 .
$$

Fraction Rules $1 \leqslant 2 \Rightarrow$
$\frac{a}{b}+\frac{c}{d}=\frac{a d}{b d}+\frac{b c}{b d}=\frac{a d+b c}{b d}$
rule 1 same Rule 2
denom.
[SAV: Do not just tell students this rule! model it until students understand, use models to develop Abstract rule]
(3) Mixed Numbers: $12 \frac{1}{8}-4 \frac{5}{8}$

$$
12 \frac{1}{8}-4 \frac{5}{8}=\frac{3}{8}+7+\frac{1}{8}=7 \frac{4}{8}=7 \frac{1}{2}
$$

Common Error: Beth writes $\frac{1}{3}+\frac{2}{5}=\frac{3}{8}$.
Why? [SAY: She is thinking of fractions as pairs of numbers.]

Can help Beth by.
(a) "Proof by contradiction"
"Beth, your reasoning gives

$$
\frac{1}{2}+\frac{1}{2}=\frac{2}{4}=\frac{1}{2} \quad \text { Something is wrong!!" }
$$

[SAV: "Proof by contradiction" is a teaching technique as well as a proof method!]
(b) Pictures:

(c) Only then to correct arithmetic

$$
\frac{1}{3}+\frac{2}{5}=\frac{\square}{15}+\frac{\square}{15}=\frac{\square}{15}
$$

Lesson: When teaching fractions, don't move pictoral \Rightarrow abstract too fast!

HW Read $\xi 6.2$ very carefully! Do HW set 25
Bring 5 A to next class
what to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
6.3 multiplication of fractions
[Do not write on board, go over in textbook:]
so far: fractions are ways to measure parts

NOW, more and more, we want to think of them as numbers which can be $+,-x, \div$.

Guiding Principles:

For example, we could interpret fraction multiplication as:

$$
\frac{2}{7} \text { "x" } \frac{3}{7}=\frac{6}{7} \quad \begin{aligned}
& \text { (similar to how } \\
& \text { we add fractions!) }
\end{aligned}
$$

but something strange happens

$$
\frac{1}{3} " x^{\prime \prime} \frac{2}{3}=\frac{1 \times 2}{3}=\frac{2}{3}
$$

would imply $\frac{1}{3}=1$ (since by m. ident. 1 is only \# such that $1 \cdot a=a$)
\rightarrow Not a good interpretation!

To avoid misconceptions (like the one above) teaching fractions must be done carefully!

Teaching sequence
case 1 whole \# x fraction
old definition of x still works!

$$
3 \times \frac{1}{4}=3 \text { groups of } \frac{1}{4}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}
$$

Think: $3 \times \frac{2}{5}=3$ groups of 2 fifths $=6$ fifths

$$
=\frac{6}{5}
$$

case 2 Fraction x whole.
old interpretations:

$$
\frac{1}{4} \times 3=\frac{1}{4} \text { groups of } 3
$$

what is $\frac{1}{4}$ groups?
$\frac{1}{4} \times 3=\underbrace{\text { "Add } 3 \text { to itself } \frac{1}{4} \text { times" }}_{\text {? }}$
Need a new interpretation of mull!

Ex: Note that $\frac{2}{3}$ of 12 eggs $=8$ eggs:

0000
0000
0000

which is the same as 12 groups of $\frac{2}{3}$

$$
12 \times \frac{2}{3}=\underbrace{\frac{2}{3}+\frac{2}{3}+\ldots \ldots+\frac{2}{3}}_{12}=\frac{24}{3}=8
$$

New Interpretation: $\frac{1}{4} \times 3=\frac{1}{4}$ of 3

Try:

see pages 44-45
case 1
case 2
Note: $3 \times \frac{1}{4}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}=\frac{1}{4}$ of $3=\frac{1}{4} \times 3$ commutative!
[SAV: By making this interpretation of fraction mut. we see that the commutative property still holds. If it didn't, then fractions wouldn't behave like numbers should! I
case 3 fraction x fraction

$$
\text { Note: } \frac{1}{2} \times \frac{8}{9}=\underbrace{\frac{1}{2} \text { of } 8 \text { ninths }=4 \text { ninths }=\frac{4}{9} .}_{\begin{array}{c}
\text { reduce to } \\
\text { case } 2
\end{array}}
$$

Start easy: $\frac{1}{2} \times \frac{1}{3}=\frac{1}{2}$ of $\frac{1}{3}$
model:

$$
\begin{aligned}
& \uparrow \\
& \text { new } \\
& \text { inter } \\
& =\frac{1}{6}
\end{aligned}
$$

interpretation (case 2)

$$
\frac{1}{2} \text { of } \frac{1}{3}
$$

$$
\frac{1}{3} \times \frac{1}{2}=\frac{1}{3} \text { of } \frac{1}{2}=\frac{1}{6}
$$

\square

Ex [Students do] model $\frac{2}{3} \times \frac{4}{5}$

(see pages 49-52 pf PM 5A)

The model motivates the abstract notation:
Fraction rule $4 \cdot \frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}$

word Problems

- m. Jackson brought $\frac{3}{40}$'s of a wood pile into the house to use in a fire. He used only $\frac{4}{9}$'s of what he brought in. How much of the wood pile did he actually use? TS.

Division (Reviews of measurement and Partitive)
measurement and partitive interpretations still work for fractions!
[SAY: In fact, we need them to make sense of the "invert and multiply" rule.]
[This can't be skipped:]
[you can follow in book if out of time]
measurement division

$$
12 \div 3 \text { means " } 12 \text { is how many } 3^{\prime} \text { 's?" }
$$

3
Partitive division

$$
12 \div 3 \text { means " } 12 \text { is } 3 \text { of what?" }
$$

In fractions, we use the same interpretations, but the dizrams might be different.

Ex 1 (measurement) If a road is created at $\frac{1}{2}$ miles per week, how many weeks are needed to build $1 \frac{3}{4}$ miles?
$\left[\begin{array}{l}\text { Notes: Answer } 1 \frac{3}{4} \div \frac{1}{2} \text {. } \\ \text { - Lisping mA study: Only 43\% of u.s. teachers correctly found } 1 \frac{3}{4} \div \frac{1}{2} . \\ \text { same study: only one U.s. teacher was able to make up a word } \\ \text { problems like ex } 1 .\end{array}\right]$

Interpretive question: $1 \frac{3}{4}$ is how many $\frac{1^{\prime}}{2}$ s?

Diagram:

TS.

$$
\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \frac{1}{4}
$$

$$
\begin{aligned}
\frac{1}{2} \text { mile } & =1 \text { week } \\
\frac{1}{4} \text { mile } & =\frac{1}{2} \text { week } \\
1 \frac{3}{4} \text { mile } & =3 \text { weeks }+\frac{1}{2} \text { week } \\
& =3 \frac{1}{2} \text { weeks }
\end{aligned}
$$

It will take $3 \frac{1}{2}$ weeks.

Ex 2 (Partative) If $\frac{1}{2}$ of a jump rope is $1 \frac{3}{4}$ meters, what is the length of the rope? interpretive question: $1 \frac{3}{4} i \frac{1}{2}$ of what?

$$
1 \frac{3}{4} \div \frac{1}{2}
$$

Steps for writing down the model: [page 148 in Text book]
(1) Draw the "what bar" and label w/ a?

(2) Find $\frac{1}{2}$ of it

(3) Label that portion by $1 \frac{3}{4}$

[SAD: $1 \frac{3}{4}$ is $\frac{1}{2}$ of what? Point to each piece as you go.]
TS.

$$
\begin{gathered}
1 \text { unit }=1 \frac{3}{4} \\
2 \text { units }=3 \frac{1}{2}
\end{gathered}
$$

The rope is $3 \frac{1}{2}$ meters long.
Note: $1 \frac{3}{4} \div \frac{1}{2}=?=1 \frac{3}{4} \times 2=3 \frac{1}{2}$
[SAD: 1st indication we must "invert and multiply"]

HW Read $\xi 6.3$ very carefully then do Hw set 26 .
Bring 5A \& 6 A to next class.

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.

6.4 Dividing fractions

ultimate goal: "invert and multiply" rule
But must explain concepts

- What division of fractions means
- How to divide
using models, interpretations, and word problems.

Teaching sequence

case 1: Whole \div whole Review
Ex 12 girls shave 5 cookies equally. How much did each jet?
(PD) or MD? " 5 is 2 groups of what?"
Either:

$$
5 \div 2=2 \frac{1}{2}
$$

or

$$
5 \div 2=\text { shaded portion }=5 \text { half cookies }=5 \times \frac{1}{2}=\frac{5}{2}
$$

Answers are equivalent: $2 \frac{1}{2}=\frac{5}{2}$. But $2^{\text {nd }}$ viewpoint is starting point of fraction division!

$$
5 \div 2=5 \times \frac{1}{2}
$$

case 2: Fraction - whole
Partition fraction into groups.
Ex 24 boys shared $\frac{2}{3}$ quart of juice equally.
How much did each get?
PD Or MD? "立 is 4 groups of what?"

$$
\begin{aligned}
& 4 \text { units }= \\
& 1 \text { unit }=\frac{2}{3} \div 4=\frac{1}{6} .
\end{aligned}
$$

Each jot $\frac{1}{6}$ quart.

$$
\text { Note: } \begin{aligned}
\frac{2}{3} \div 4 & =\frac{1}{4} \text { of } \frac{2}{3} \quad \text { (by diagram) } \\
& =\frac{1}{4} \times \frac{2}{3} \\
& =\frac{2}{2}=\frac{1}{6}
\end{aligned}
$$

Ex $3 \frac{6}{7} \div 3$ using Area model.

model shows:

$$
\frac{6}{7} \div 3=\frac{6}{21}=\frac{2}{7}
$$

Abstractly:

$$
\frac{6}{7} \div 3=\frac{1}{3} \text { of } \frac{6}{7}=\frac{1}{3} \times \frac{6}{7}=\frac{2}{7}
$$

Note: $\frac{6}{7} \div 3=\frac{6}{7} \times \frac{1}{3}$
case 3 Whole \div fraction

* Conceptually hardest case. Use models and word prob.

Ex 4 Jill bought 5 oranges. She cut each into $\frac{1}{2}$ pieces. How many halves did she have?
PD or (MD)? 5 is how many $\frac{1}{2}$'s?

Hence $5 \div \frac{1}{2}=10$.

10 pieces

Dividing by $\frac{1}{2}$ is the same as mull. by $2!$

Ex 5 Jim decided to walk to Jill's house from his. After 6 blocks he was $\frac{3}{4}$'s of the way. How far apart are their houses?

PD or MD? "b is $\frac{3}{4}$ of what?"

TS.

$$
\begin{array}{r}
3 \text { units }=6 \\
1 \text { unit }=2 \\
4 \text { units }=8
\end{array}
$$

She lives 8 blocks away.
Abstractly: $6 \div \frac{3}{4}=(6 \div 3) \times 4=$

$$
\begin{aligned}
& =\left(\frac{1}{3} \text { of } 6\right) \times 4 \\
& =6 \times \frac{1}{3} \times 4 \\
& =\frac{6 \times \frac{4}{3}}{7}=\frac{24}{3}=8 .
\end{aligned}
$$

case 4. fraction - fraction
Ex 6 $\frac{6}{7} \div \frac{2}{7}$ using M.D.
$\frac{6}{7}$ is how many $\frac{2}{7}$'s?

shows

In general
Fraction Rule $5: \frac{a}{b} \div \frac{c}{b}=a \div c \quad$ (or $\frac{a}{c}$ using FR.3)

Note that this leads to the common "invert and multiply" rule.
Ex $\frac{1}{4} \div \frac{2}{3}$
Abstractly: $\frac{1}{4} \div \frac{2}{3}=\frac{3}{1} \div \frac{8}{12}=3 \div 8=\frac{3}{8}=\frac{1}{4} \times \frac{3}{2}$
Rule 1 Rule 5 Rule 3 Rule 4
more abstractly:

$$
\frac{a}{b} \div \frac{c}{a}=\frac{a d}{b d} \div \frac{b c}{b d}=a d \div b c=\frac{a d}{b c}=\frac{a}{b} \times \frac{d}{c}
$$

invert and multiply!
Note: $\frac{3}{2}$ is the inverse or reciprocal of $\frac{2}{3}$.

This more general rule follows from partitive interpretation:
Ex 7 $\frac{5}{6} \div \frac{4}{7}$

PD: $\frac{5}{6}$ is $\frac{4}{7}$ of what?

$$
\begin{aligned}
4 \text { units }=\frac{5}{6} \\
1 \text { unit }=\frac{5}{6} \div 4=\frac{5}{24} \\
?=7 \text { units }=\frac{5}{24} \times 7=\frac{35}{24}
\end{aligned}
$$

Abstractly:

$$
\begin{aligned}
\frac{5}{6} \div \frac{4}{7} & =\left(\frac{5}{6} \div 4\right) \times 7 \\
& =\left(\frac{1}{4} \text { of } \frac{5}{6}\right) \times 7 \\
& =\frac{5}{6} \times \frac{1}{4} \times 7 \\
& =\frac{5}{6} \times \frac{7}{4}=\frac{35}{24} .
\end{aligned}
$$

How Read $\varepsilon 6.4$ and ध 6.5. Do Ww set 27.
Bring Text book to next class!
$\sin 35 A$
Sing 6A
6.5 More Division of Fractions
[SAD: Today we will spend all of class on word problems. I will do a few, then you'll do some in small groups (of 2) and present them at the board. Your HW is to write Teacher solution's to the problems in the text. we will do some in class.]

Ex sam spent $\frac{3}{4}$ fhis monery on an $\$ 18$ book. How much money did he have at first?

This asks " 18 is $\frac{3}{4}$ of what?" \Rightarrow P.D. for $18 \div \frac{3}{4}$
T.S.

$$
\begin{aligned}
3 \text { units } & =18 \\
1 \text { unit } & =6 \\
4 \text { units } & =24
\end{aligned}
$$

He had \$24 at first.
6
Note: $18 \div \frac{3}{4}=18 \times \frac{4}{3}=24$.
[warm up: Assizn problems (a), (c), (g), (h). From problem 5 of HW set 26 . Assign 1 problem to each group of 2 students so that each group has a problem.

- while they are working, write problems on the board.
- Pick groups to jive teacher's solution.
- Point out PD vs. MD for 1-step problems.
(a)

PD: "50 is $\frac{2}{5}$ of what."
(g)

(h)

$$
\begin{aligned}
6 \text { units } & =127-7=120 \\
1 \text { unit } & =20 \\
20-7 & =\$ 13
\end{aligned}
$$

[spend no more that 15 minutes!]
[Now assign word probe (b), (c), (f), (h) of prob 5 in HW set 27 as before.]
(f)

(b)

2 units $=8$ bowls
1 unit $=4$ bowls
$\Rightarrow 2$ units $=6$ plates
1 unit $=3$ plates
5 units $=15$ Plates
[Note: try problem (h) using algebra only before class. Enjoy!
singapore loves to give these type of problems.]

Ex 1 write a word problem using MD for $36 \div \frac{2}{5}$.
(1) MD: "36 is how many $\frac{2}{5}$'s?"
(2) Draw diagram

(3) Answer

$$
\begin{gathered}
18 \mathrm{~mm} \\
36 \div \frac{2}{5}=36 \times \frac{5}{8}=90
\end{gathered}
$$

(4) make up word problem which would produce model:

Jenny has 36 yards of ribbon. It takes $\frac{2}{5}$'s of a yard to make a bow. How many bows can she make?

Ex 2 PD word problem for $36 \div \frac{2}{5}$.
(1) PD: 36 is $\frac{2}{5}$ of what?
(2) Draw diagram:

(3) Answer: 90
(4) make problem. (PD works good for "before and after" situations)

John used 36 min of his break to eat lunch. If this was $\frac{2}{5}$'s of his total break time, how long is his break?
multi step word problems
Replace step 2 with a more complicated model
HW set 27 , prob 4 (c).

Solve the model:

$$
\begin{array}{rl}
3 \text { units }=450 & 5 \text { units }=300 \\
2 \text { units }=300 & 1 \text { unit }=60 \text { units } \\
3 \text { units } & =180
\end{array}
$$

Galley made 450 cookies. She sold $\frac{1}{3}$ of them and gave $\frac{2^{\prime}}{5}$'s of the remainder to some friends. How many did she have left?

HW Read §azain. Do HF set 28.
(In problem $5 y$, change $\frac{2}{3} \rightarrow \frac{1}{3}$)
6.6 Fractions as Numbers
[SAY: Understanding fraction arithmetic becomes increasingly important as students prepare for aljebra.]

Fraction aritmetic is developed using many artilumetic problems like the following:

Ex Hw set 29. Prob $2 d$

$$
\begin{array}{rlrl}
{\left[\left(\frac{1}{4} \cdot \frac{3}{4}\right)+\left(\frac{2}{3} \div \frac{4}{3}\right)\right] \div \frac{11}{12}=\left(\frac{1}{4} \cdot \frac{3}{4}+\frac{2}{3} \cdot \frac{3}{4}\right) \cdot \frac{12}{11} \text { R5 }} \\
& =\left(\frac{1}{4}+\frac{2}{3}\right) \cdot \frac{3}{4} \cdot \frac{2^{3}}{11} & & \text { distributive Prop. } \\
& =\left(\frac{3}{12}+\frac{8}{12}\right) \cdot \frac{9}{11} & \text { R1, R4 } \\
& =\frac{10}{4} \cdot \frac{9^{3}}{41} & \text { R2 } \tag{R2}\\
& =\frac{3}{4} & \text { R4, R1 }
\end{array}
$$

Students do rest of the problems in Hw set 29. Prob 2 . (in groups of 2.5 min .)

Fraction Arithmetic - mathematics
[SAV: we used models and interpretations to generate the 5 rules of fractions. is it possible to use different models and interpretations to zenerate different (but valid) fraction rules?
Then, for instance, each country or classroom could have a different way to add fractions!]

Recall from $\varepsilon 4.2$
"All indentities (in particular, the arith. rules) can be derived from the arith. properites."

Thus

$$
\begin{aligned}
& \text { Frith. } \\
& \text { properties }
\end{aligned} \Rightarrow \text { Rules 1-5 } \Rightarrow \begin{gathered}
\text { fraction } \\
\text { arithmetic. }
\end{gathered}
$$

we are forced to make these rules they do not depend upon the models or interpretations.

To show this, we assume there is a set called "fractions" and
-There is some way to + and x them

- They satisfy the arithmetic properties (Any order, dist, identity)

The multiplicative inverse property

For each nonzero fraction x there is a unique fraction called the inverse, $\frac{1}{x}$ such that

$$
x \cdot \frac{1}{x}=1 .
$$

Fraction: $1,2,3,4, \ldots, \frac{3}{4}$
$\downarrow \downarrow$
Inverse: $\quad 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \ldots \frac{1}{3}$

fractional unit

Def Each fraction can be represented by a multiple of a fractional unit:

$$
\frac{a}{b}=a \cdot \frac{1}{b} .
$$

To prove "properties \Rightarrow mules" we need the following lemma:

Lemma Assuming only arithmetic properties,

$$
\frac{1}{a} \cdot \frac{1}{b}=\frac{1}{a b} \quad \text { for } a, b, \neq 0
$$

[SAY: The multiplication of 2 fractional units is again a fractional unit.]

Proof

$$
\begin{aligned}
\frac{1}{a} \cdot \frac{1}{b} & =\frac{1}{a} \cdot \frac{1}{b} \cdot 1 & & \text { mull. identity } \\
& =\frac{1}{a} \cdot \frac{1}{b} \cdot(a b) \frac{1}{a b} & & \text { cult. inverse } \\
& =\left(a \cdot \frac{1}{a}\right)\left(b \cdot \frac{1}{b}\right) \cdot \frac{1}{a b} & & \text { Any order } \\
& =1 \cdot 1 \cdot \frac{1}{a b} & & \text { multi. inv. } \\
& =\frac{1}{a b} & & \text { mull. identity }
\end{aligned}
$$

The Rules 1-5 follow from the def. of fractions and the arithmetic property.

Proof

Rule 1

$$
\frac{a n}{b n}=\frac{a}{b}
$$

$$
\begin{aligned}
& \frac{a n}{b n}=(a n) \frac{1}{b n}=a n \\
& \text { def. } \\
& \text { Lemma }
\end{aligned} \frac{1}{b} \cdot \frac{1}{n}=\left(a \cdot \frac{1}{n}\right)\left(n \cdot \frac{1}{n}\right)
$$

$$
=\frac{a}{b} \cdot 1 \text { def of fractions, mull. inverse }
$$

$$
=\frac{a}{b} \quad \text { multi. id. }
$$

Rule $2 \quad \frac{a}{b}+\frac{c}{b}=a \cdot \frac{1}{b}+c \cdot \frac{1}{b}=(a+c) \frac{1}{b}=\frac{a+c}{b}$ def dist.prop. def.

Rule $3 \quad a \div b=\frac{a}{b}$
def. of div.
$a \div b=x \leftrightarrow a=b x$. Multiply by $\frac{1}{b}$

$$
a \cdot \frac{1}{b}=\frac{1}{b}(b x)=\left(\frac{1}{b} \cdot b\right) x=1 \cdot x=x
$$

any order multi inv. multi. id.
so

$$
\begin{aligned}
a \div b=x= & a \cdot \frac{1}{b}=\frac{a}{b} \\
& \text { def. of frac. }
\end{aligned}
$$

Rule 4 HoW

Rule $5 \quad$ By def, $\quad \frac{a}{b} \div \frac{c}{d}=x \Leftrightarrow \frac{a}{b}=\frac{c}{d} x$.
Then

$$
\begin{aligned}
\frac{a}{b} \cdot \frac{d}{c}= & =\frac{d}{c}\left(\frac{d}{d} x\right)=\frac{d c}{d c} \cdot x=\left(d c \cdot \frac{1}{d c}\right) x \\
& \underbrace{\text { RU actions }}_{\text {RA order } \quad \text { def of }} \\
& =1 \cdot x \quad \text { mull. inverse } \\
& =x \quad \text { mult.id. }
\end{aligned}
$$

Thus $\frac{a}{b} \div \frac{c}{d}=x=\frac{a}{b} \cdot \frac{d}{c}$

Note: $\quad \frac{1}{\frac{a}{b}}=1 \div \frac{a}{b}=1 \cdot \frac{b}{a}=\frac{b}{a}$
Rule 3 RS multi: id.
"Inverses are the same as reciprocals!"

HW Read \& 6.6. Do HW set 29. Bring Primary math 5A \& 6A to next 3 lectures.

What to bring to class: Ask students to bring PM $4 A$ and $5 A$.
7.1 Ratios and Proportions

GOAL: To define ratio
Have class open sing 5A to pg 71.
start reading tozether. Have students fill in blanks.

call attention to

- Movement from concrete \Rightarrow Pictorial
- Every problem is in a new setting
paze 76 , simplify by crossing out
4:10
2:5

[AVOID WRITING RATIO IN FRACTION NOTATION!]

- not yet anyway -
- Page 77-78. note teacher's solutions
- Paze 77, child hints at definition

7:4 means 7 units to 4 units
$\Rightarrow 7$ and 4 are in the same unit!

Page 79 Get student at the board!
send 3 or 4 up to the board, assizn them each 1 problem from practice 5A

suzgestion: 4, 5, 7

Give 2 minutes for student to try to draw teacher solutions.

Then, instructor reads problem, and class works together to build T.S. (with student at board). read pazes $80-81$, note

- ratio doesn't appear to be a number.
- Do problems 4,6,9 of practice 5B quickly - class helps build pictures!

Def. A proportion is a statement that two vatios are equivalent
$2: 3=10:$

Note that

- the unit is the same for both quantities.

Ex: Ratio of oranzes to apples is $2: 3$
really means
2 objects to 3 objects.
Ex: 50 miles to 1 hour is not a vatio, called a vate.

- For a specific situation, there is a unit which measures both quantities.

Ex: The ratio of Jims monery to Sam's is $2: 3$.
If Jim has $\$ 10$, how much does Sam have?

[SAl: Here the unit is a 5 dollar bill. Jim has 2 five dollar bills, Sam has 3. $2: 3=10: 15$, but each is measured $w /$ dfferent units: a five $v s$ \$1.]

Def. We say the ratio between two quantities is $2: 3$ if there is a unit so that the 1 st quantity measures 2 units and the second measures 3 units.

Ratios represented as fractions

Because ratios have many equivalent representations like fractions
$(2: 3=4: 6=12: 18=$ etc...), thery are often written as fractions:

Tim to paze 24 of \sin g 6A, read and discuss problems $6-16$ quickly.
Note:

- ratios can be converted into
- fraction of total $2: 3 \sim \sim$ (problem 6)
- turned into a scale factor $2: 3 \sim \frac{2}{3}$ (problem 7,8)
- Fractions can be used to write an equivalent ratio (prob 9)
- After a ratio is turned into a fraction, the fraction is a number, but the ratio is not this is because we specified a whole unit in order to write it as a fraction.

Thus
"ratios are fractions that are waiting for a standard unit to be specified."

This makes ratios more versitile then fractions, but we cant think of them as numbers. one more time to be sure: ratios are not numbers!

If time, go over problems in Practice 3A of Sing 6A (suggestion: 4, 7, 8)

How Read \& 7.1 and do How set 30

Ex: A bag contains 6 white and 10 red marbles. 4 white marbles and 20 red marbles were added to the bag. what is the ratio of white to red marbles in the bag?

No matter how you try. you can't find a way to "add" (or $-, x, \div 1$ Ratios are not \#'s!

What to bring to class: Ask students to bring PM $4 A$ and $5 A$.
7.2 Chanzing ratios and intro to percents

* Do some Hw probs from previous set.
open sing 6A to paze 34-37 and discuss problems on those pazes [watch out! Think about them before going into class.]

Note: we see that there are no operations $(t,-, x, \div)$ that take us from the before vatio to the after ratio.

In groups of 2 , assign problems from practice 3 (suzzestion: prob 4, 5, 7, 8) Have students present teacher's solution at board.

Percents

Parts of a whole can be expressed by

- fractions
- decimals (chapter 9)
percents

Percent means parts per hundred, "per cent" as in century or cents in a dollar. visualize percents:

you need to know what the "whole" stands for.

Ex (Similar to 6A, page 55)
Jill saves $\$ 600$ and sam saves $\$ 720$.
Express sam's savings as a percentage of Jill's.
unit $=100$!

s

$\$ 600 \longrightarrow 100 \%$
$\div 600$
$\times 720 \overbrace{\$ 720 \longrightarrow}^{\$ 1 \longrightarrow}{ }^{\$ 200} \%=\frac{100}{6} \%$

Sam's savings is 120% as much as Jills
sam saved 20% more than Jill.
20% of $\underbrace{\text { Jills money }}_{\text {whole unit }}$
Do problems 5, 7, 9, 10 of Practice 4C in groups of 2 Have students present at the board

HW Read छ 7.2 and do HW set 31 . (chanze)!

What to bring to class: Ask students to bring PM $4 A$ and $5 A$.
7.3 Solving Percent problems by the Unitary method
"Unitary method" = Find the whole
Ex1 The price of a shirt was marked down 35% to $\$ 26$. What was the orizinal price?

Ex 2 A salesman sold $2 T V s$ at $\$ 600$ each. The 1st was sold at a 25% profit and the 2nd was sold at a 25% loss. Find his Net profit or loss.
a) Profit on 1st TV.

$$
[\longleftarrow \text { scale } 1 s H]
$$

b) Loss on 2nd TV

Loss was $\$ 200$.
c) Net loss $\$ 200-\$ 120=\$ 80$
moral: Equal percents (25% profit/ 25% loss) do not mean equal amounts percents of different things!

Ex 3 [Students do] In a class, 40% of the students are male. There are 6 more female students than male. How many students are in the class?

There are 30 altozether

Ex 4 "multi-step" A $\$ 40$ shirt was reduced 20% in a sale. Later the sales price was reduced 10%. What was the price then? [Students try first]

Step 1

sale

Step 2

$$
\begin{aligned}
100 \% & \longrightarrow 32 \\
10 \% & \longrightarrow \$ 3.20
\end{aligned}
$$

$$
90 \% \longrightarrow 3.2 \times 9
$$

$$
=32-3.2
$$

$$
=\$ 28.80
$$

Final cost was $\$ 28.80$

moral Price reductions don't add!

10% off a different amount

caution on Percents

(1) Price of $\$ 100$ stereo was increased by 10%, then reduced by 10%

$$
\$ 100 \xrightarrow{10 \% \text { inc. }} \$ 110 \xrightarrow{10 \% \text { off }} \$ 99 \quad \text { Not orizinal Price! }
$$

(2) An $\$ 18$ Stock increased 200%

After

stock rose $3 \times 18=\$ 54$.
Increase $200 \% \neq$ double!

In general. \% problems are easy if you keep track of what 100% (or the whole amount) means.

If time: Do problems 6 (tricky), $7,8,9,10$ of Practice 4E.

HW Read $\varepsilon 73$ do HW set 32
8.1 Integers

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.

Goal: To explain $-1 x-1=1$
models
(Best) measurement model.

Number Line

Temp

Elevation

This is a position labeled $\underbrace{-1}$ (=opposite of 1)
Single symbol, nothing to
do with subtraction yet.

Def: The integers are the set of whole numbers together with their opposites.

[SAY: we are once again enlarging the set of whole numbers!]

- money \$1 bill, \$1 I.O.V.
[st use l.O.W.'s, then move to chip models = abstract I.O.W.'s.]
- Set model - doesn't work well, but is used in some schools.
"arbitrary
and hard to
remember" $\left\{\begin{array}{c}\text { Black chip } \leftrightarrow 1 \\ \text { cancels }\end{array}=\begin{array}{l}\text { Red chip } \leftrightarrow-1\end{array}\right.$
operations
"Take the opposite" (A new operationl)

The opposite of 3 is -3
The opposite of -3 is 3

Ex a) 8 steps back is \qquad steps forward.
b) A decent of 10 m means an ascent of \qquad
c) $\underbrace{6 \text { steps forward }}_{6}$ is \qquad -6 step forward.

In general
opposite of a

opposite of $-a$

Principle: "The opposite of the opposite is the original."

[SAY:
Note: Works for both positive and negative \#'s

- Not the reason for $-1 x-1=1$ more work!
. 3 uses for "-" : (1) opposite, label -3, subtraction]

Addition
case 1 pos + pos
(1) $4+3=1$
 start count up

$$
3
$$

[SAV: we had $\$ 4$ and earned $\$ 3$ more.

- The elevator started on the 4th floor and went up 3.1
case 2 neg + pos

$$
-3+4=1
$$

start count up

- The temp was $-3^{\circ} F$, then rose $4^{\circ} \mathrm{F}$
- I was in debt $\$ 3$, then earned $\$ 4 \longleftarrow$ from students
case 3 (Hardest) pos + ned

$$
\begin{aligned}
& 4+-3 \\
& \text { start count up }
\end{aligned}
$$

-3 ??
[SAV: what does this mean?
\leadsto Need an interpretation!]
opposite \qquad
Interpretation: "count up -3" means "take the opposite of counting up 3"

$$
4+-3=\text { start at } 4 \text {, count up }-3
$$

$=$ Start at 4, take the opposite of counting up 3

$$
=" \text {. count down } 3
$$

$$
=1
$$

Note:(1) Same as $-3+4=1 \Rightarrow$ this interpretation makes addition commutative!
(2) Same as subtracting! $4+-3=4-3$.

Principle: "Adding the opposite is the same as subtracting."
Def: $a+-b=a-b$

- If I have a\$4 in my right pocket and \$3 1.0.V. in my left,

How much money can I spend?
[SAY: I was on the 5th floor and the elevator went up -2 floors.
Not realistic! We don't ever say that, so including problems like this makes negative \#'s artificial, which they are not.
We are starting to find that integer word problems are difficult to create. I
case 4 neg + neg HW problem. Modify case 3.

HW Read $\varepsilon 8.1$ [There is a lot of nice Teacher info]
Do HW set 34. Prob II won't get graded, but read it.

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
8.2 more integer basics

Subtraction
case 1,2 $\quad 4-3=1$

case 3.4 $4--3$ \qquad

$$
-2--3
$$ count down -3??

interpretation: Count down -3 = opposite of count down 3

$$
=\text { count up } 3!
$$

$$
\left\{\begin{array}{l}
4--3=4+3=7 \\
-2--3=-2+3=1
\end{array}\right.
$$

Principle: "Subtracting a negative is the same as adding the opposite." Rule 2: $a-(-b)=a+b$

Another way: $4--3$
part-whole interpretation

Another way: Pattern

$$
\begin{aligned}
4-2 & =2 \\
4-1 & =3 \\
4-0 & =4 \\
4-(-1) & =)^{2}+1 \\
4-(-2) & =)^{2}+1 \\
4-(-3) & =)^{2}+1
\end{aligned}
$$

Another way: Missing addends:
$4-(-3)=$ \qquad $\longleftrightarrow 4=-3+$ \qquad
Ans: $-3+1=4$
multiplication of integers

(1) pos x pos $3 \times 4=3$ groups of $4=4+4+4=12$

(2) $\operatorname{pos} \times n e g=n e g$

$$
3 x-4=3 \text { groups of }-4=-4+-4+-4=-12
$$

(3) neg $\times p o s=$ neg
$-4 \times 3=\underbrace{-4 \text { groups of } 3}_{? ? \text { what does this mean? }}$
Need an interpretation. Want commutative property

$$
\begin{aligned}
& -4 \times 3=3 \times-4=-12 \\
& \text { tells us what the answer should be. }
\end{aligned}
$$

Interpretation: "the opposite of 4 " groups of $3 \leftrightarrow$ the opposite of " 4 groups of 3 " so
$-4 \times 3=-(4 \times 3)=-(12)=-12$
interpretation opposite operator

Thus,
Rule 3: $-a \times b=-(a \times b)$
Another way:

$$
\begin{aligned}
& 2 \times 3=6 \\
& 1 \times 3=3 \\
& 0 \times 3=0 \\
& -1 \times 3=-3 \\
& -2 \times 3=-
\end{aligned}
$$

case 4 neg \times neg $=$ pos.
use the previous interpretation!

$$
\begin{aligned}
&-3 x-4=\text { "the opposite of } 3 \text { " groups of }-4 \\
&=\text { the opposite of " } 3 \text { groups of }-4 \text { " } \\
&=-(3 \times-4) \\
&=-(-12) \text { inter. } \\
&=12 \\
& \text { Hence, }-a \times-b=a \times b
\end{aligned}
$$

Another way
Pattern:

x	2	1	0	-1	-2
2	4	2	0	-2	-4
1	2	1	0	-1	-2
-1	-2	-1	0	1	2
-2	-4	-2	0	2	4

Division Follows from multiplication
compare $-6 \div-2$ to $6 \div 2$ using M.D.

same question, but in
opposite direction
Ans to both: 3

$$
\text { Rule } 5-a \div-b=a \div b
$$

$$
\begin{gathered}
- \text { or- } \\
\frac{-a}{-b}=\frac{a}{b}
\end{gathered}
$$

Next we show $-6 \div 2.6 \div-2,-(6 \div 2)$ one equal.

$$
-(6 \div 2)=-\left(6 \times \frac{1}{2}\right)=-6 \times \frac{1}{2}=-6 \div 2
$$

and

$$
-6 \div 2=-6 \div-(-2)=6 \div-2
$$

So, $-(6 \div 2)=-6 \div 2=6 \div-2$
Rule $b:-(a \div b)=-a \div b=a \div(-b) \quad\left[\right.$ or $\left.\frac{a}{-b}=\frac{-a}{b}=\frac{a}{-b}\right]$

HW Read $\varepsilon 8.2$ [It has a lot of nice teacher help.] Do How set 35

Integers are numbers because they behave like them:
(1) Commutative property $\quad-3+5=5+-3,(-3) 5=5(-3)$
(2) Assoc. Prop $(-3+-2)+7=-3+(-2+7)$ check $-3 \times(-2 \times 7)=(-3 \times-2) \times 7\} \begin{aligned} & \text { using } \\ & \text { Rules! }\end{aligned}$
(3) Distributive Prop. $\quad 3(-4+-2)=3 x-4+3 x-2$
(4) Identities $\quad-3+0=-3,-5 \quad 1=-5$.

And a new property which is important to integers:
(5) Additive inverse property: For each integer a there exists an integer called the opposite of a, denoted by $-a$, which satisfies

$$
a+-a=0
$$

[SAY: Additive Identity \longleftrightarrow Describes 0 multi. Identity \longleftrightarrow Describes 1

we already have prop. for 0,1. This is why we exclude from def of prime numbers.
milt inverse \longleftrightarrow Describes fractions
Additive Inverse \longleftrightarrow Describes integers!]

Summary

(1) Created "opposite numbers"
(2) Made interpretations so we could $+,-, x, \div$ them. Interpretation summarized by Rules 1-6.
(3) Integers satisfy properties (\Rightarrow integers are numbers)
(4) special property associated to integers.
we need to show:
(5) Properties \Rightarrow Rules 1-6
"Interpretations"
(5) Means that we cannot develop a different set of interpretations, these rules are forced upon us by the properties!

Theorem: Rules 1-6 follow from the axithmetic properties.
Fule: : $-(-a)=a$ [uses Decompress/Analyze/ Compress proof w/ Add an appropriate 0.]

$$
\begin{aligned}
-(-a) & =0+-(-a) & & \text { Additive Identity } \\
& =(a+-a)+-(-a) & & \text { Additive Inverse } \\
& =a+[-a+-(-a)] & & \text { Associative Property } \\
& =a+0 & & \text { Additive Inverse } \\
& =a & & \text { Additive Identity }
\end{aligned}
$$

Def $8.1 .3 a+-b=a-b$
$a-b=\ldots$ means $a=b+\ldots$
Add $-b$ to both sides:

$$
\begin{aligned}
a+-b & =-b+(b+\ldots) \\
& =(-b+b)+\ldots \text { Associative Property } \\
& =0+\ldots \quad \text { Additive Inverse } \\
& =-\quad \text { Additive Identity } \\
& =a-b \quad \text { Substitution }
\end{aligned}
$$

[so def is really a rule]

Rule 2: $a--b=a+b \quad$ Done in last HW set [Follows from RI and Def 8.1.3]

Rule 3: $-a \cdot b=-(a \cdot b)$

(st	
$-3 \cdot 4$	$=-3 \cdot 4+0 \ldots$
	$=-3 \cdot 4+[3 \cdot 4+-(3 \cdot 4)]$
	$=[-3 \cdot 4+3 \cdot 4]+-(3 \cdot 4)-$
	$=(-3+3) \cdot 4+-(3 \cdot 4)-$
	$=0 \cdot 4+-(3 \cdot 4)$
	$=0+-(3 \cdot 4)-$
	$=-(3 \cdot 4)-$
	$=-(12)=-12$

$2^{\text {nd }}$

$$
-a \cdot b=-a \cdot b+0
$$

$$
=-a b+[a b+-(a b)]
$$

$$
=[-a \cdot b+a b]+-(a b)
$$

$$
=(-a+a) \cdot b+-(a b)
$$

$$
=0 \cdot b+-(a b)
$$

$$
=0+-(a b)
$$

$$
=-(a b) \vee
$$

Rule 4: (using Already verified Rules)

$$
\begin{aligned}
-a \cdot-b & =-(a \cdot-b) & & \text { Rule 3 } \\
& =-(-b \cdot a) & & \text { Commutative Property } \\
& =-(-(b a)) & & \text { Rule 3 } \\
& =b a & & \text { Rule 1 } \\
& =a b & & \text { Commutative Property }
\end{aligned}
$$

Rule 5: $-a \div-b=a \div b$

$$
-a \div-b=\text { means }-a=-b .
$$

Take the opposite of both sides:

$$
\begin{gathered}
-(-a)=-(-b \cdot-) \\
\| \\
a=b \cdot- \\
a \div b=-=-a \div-b!
\end{gathered}
$$

Def. (Ordering) $a \leq b \Leftrightarrow b-a$ is positive or zero.

Order Rules

1. $a \leq b \Leftrightarrow a+c \leq b+c$
$2 a \leq b \Leftrightarrow \begin{cases}a c \leq b c & c>0 \\ a c \geq b c & c<0\end{cases}$

Proof of Order Rule 1

$$
\begin{array}{rlrl}
a+c \leq b+c & \Leftrightarrow(b+c)-(a+c) \text { is positive or zero. } \\
& \Leftrightarrow b+c+-a+-c \text { is pos. or } 0 & \text { How Prob } \\
& \Leftrightarrow b+-a+(c+-c) \text { is pos. or } 0 & & \text { Any order } \\
& \Leftrightarrow b-a+0 \text { is pos or } 0 & & \text { Add inv, R2 } \\
& \Leftrightarrow b-a \text { is pos or } 0 & & \text { Add id. } \\
& \Leftrightarrow a \leq b . & &
\end{array}
$$

HW Read 8.3 Do HW set 36

What to bring to class: Ask students to bring PM $4 A$ and $5 A$.
9.1 Decimals

s

Decimals represent points on the number line by repeatedly sudividing intervals into tenths, hundredths, etc.

Ex Find 8.274

This is just place value!

1. Introduction

Expanded form:

Taught by: number line (meter sticks, balance scales...)

- "Hundreds square" used but
(i) 2 dimensional
(ii) kids make error:
$.2=$

(iii) what about thousandths?
- Chip models

Notation:

USS.

some European countries

Decimals are easy to compare by: .48_. 6

- Locating on number line

- making "equal lengths"
. 6
.48
- Convert to like fractions

$$
b=\frac{6}{10}=\frac{60}{100} \quad .48=\frac{48}{100}
$$

operations - same as for whole numbers but keep track of the decimal point.
11. Addition \& Subtraction

$$
\begin{array}{lc}
\text { Ex 1 } & \begin{array}{c}
1 \\
\\
\\
\\
\\
\\
\\
\\
\hline 1.62 \\
5.42
\end{array}
\end{array}
$$

Ex 2 [Students do 1 min .]
11.170

$$
-2.8613
$$

- Align Place values!
- Append O^{\prime} 'suntil same length
III. 1-dizit multiplication [Students do. 1 min]

IV. Place value

Principle: "multiplying by 10 means shift the decimal point to the right:"
why?
(1) (.01)
(1) (.91) $\xrightarrow{\times 10}$
(1)
(1) (1)
(1) (1)
(1)
$.32 \times 10=3.2$

because

Hence: multiply by $10,100,1000, \ldots \longleftrightarrow$ move decimal $1,2,3, \ldots$ places to the right divide by $10,100,1000, \ldots \longleftrightarrow$ move decimal $1,2,3, \ldots$ place to the left
V. Multi digit multiplication ε Division

$$
\text { Ex } \begin{aligned}
1.02 \times 3.4 & =\frac{102}{100} \times \frac{1^{\text {st }} \text { reg. algorithm! }}{\frac{34}{10}=\frac{\sqrt{102 \times 34}}{1000}}=\frac{3448}{1000} \\
& =3.468
\end{aligned}
$$

Ex 5 [students do]

$\begin{array}{r}.02 \\ .041 \\ \hline\end{array}$
For division, use compensation method from mental math!

$$
\begin{aligned}
& \times 10 \times 10 \times 10 \times 10 \\
& 162.8 \div .037= 1628 \div .37 \\
& \times 10 \times 10 \\
&= 16280 \div 3.7 \\
&= 162800 \div 37 \longleftarrow \\
&- \text { or }- \\
& \text { - whole \# division! } \\
& 162.800 \div .037= 162800 \div 37 \\
& \text { (2) shift } 3 \text { (1) shift } 3
\end{aligned}
$$

we can do this because of equivalence of fractions:

$$
\begin{aligned}
162.8 \div .037 & =\frac{1628}{.037} \times 10=\frac{1628 \times 10}{37 \times 10}=\frac{1620}{3.7} \times 10 \\
& =\frac{168800}{37}=162800 \div 37
\end{aligned}
$$

Ex 6 [students do] Find the value of $81 \div 3.9$ to 2 decimal places.

$$
3.9 \sqrt{81} \longrightarrow \begin{gathered}
6 \\
3918.1 \\
\frac{-78}{.307} \\
\\
\\
\\
\\
\\
\\
\\
\frac{-00}{300} \\
\\
\\
\\
\end{gathered}
$$

$$
.81 \div 3.9 \approx .21
$$

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
9.2 Fractions and Decimals [$1 \frac{1}{2}$ days]

1. Converting Decimals to Fractions.

Denominator = appropriate power of 10

$$
.37=\frac{37}{100}
$$

$$
\begin{aligned}
& 3.288=\frac{3298}{1000 \div 8}=\frac{411}{125} \\
& 1000=2^{3} \cdot 5^{3}
\end{aligned}
$$

Denominator $=$ Product of $2^{\prime} s$ and $5^{\prime} \varepsilon$
Numerator = when no Z^{\prime} s or $5^{\prime} s$, fraction in simplest form.
II. Fraction \longrightarrow decimal.
(a) use equivalent fractions until denominator is a power of 10.

$$
\begin{aligned}
& \frac{71}{100}=.71 \\
& \frac{3}{25}=\frac{52}{100}=.52
\end{aligned}
$$

$\begin{aligned} \text { Student does } \longrightarrow \frac{3}{8} & =\frac{3 \cdot 5 \cdot 5 \cdot 5}{2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5}=\frac{375}{1000}=.375 \\ \frac{7}{20} & =\end{aligned}$
or (b) Just divide

$$
\frac{1}{8}=\frac{.125}{8 \frac{1.00}{}} \begin{gathered}
\frac{8}{.20} \\
\frac{16}{40}
\end{gathered}
$$

$$
\frac{1}{3}=.3333 \ldots
$$

Two types of decimal numbers:

The A fraction $\frac{a}{b}$ in simplest form has a terminating decimal expansion \Leftrightarrow denominator b is a product of 2 ' s and $5^{\prime} s$ only.

Ex	$\frac{2}{25}$	$\frac{6}{150}$	$\frac{5}{321}$	$\frac{21}{35}$

Sketch of Proof: One way " \Longrightarrow "A fraction with a terminating decimal expansion can be written $\quad \frac{a}{b}=\frac{\text { whole \# }}{\text { power of } 10}=\frac{\text { whole\# }}{10^{n}}=\frac{\text { whole \# }}{2^{n} \cdot 5^{n}}$

Ex $\quad .882=\frac{882}{10^{3}}=\frac{882}{2^{3} \cdot 5^{3}}=\frac{441}{2^{2} \cdot 5^{3}}$
Power of 10
There may be cancelation, but denominator still product of $2^{\prime} s, 5^{\prime} s$.

Other way: If fraction has form say $\frac{N}{2^{3} \cdot 5^{7}}$ multiply by $\frac{2}{2}$ or $\frac{5}{5}$ until powers of 2 and 5 match in denominator.

$$
\begin{aligned}
\frac{N}{2^{5} \cdot 5^{7}} & =\frac{2}{2} \cdot \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{N}{2^{5} \cdot 5^{7}}=\frac{2^{4} \cdot N}{2^{4} \cdot 2^{3} \cdot 5^{7}}=\frac{16 N}{2^{2} \cdot 5^{7}} \\
& =\frac{16 N}{10^{7}} \longleftarrow \text { terminating decimal }
\end{aligned}
$$

If denominator has factors other than 2^{\prime} s or 5 's, what happens?

Ex

Ex [students do]

Ex $\quad \frac{1}{7}=\overline{142857}$
split amongst class:

$$
\left.\begin{array}{l}
\frac{2}{7}=\overline{285714} \\
\frac{3}{7}= \\
\frac{4}{7}= \\
\frac{5}{7}= \\
\frac{6}{7}=
\end{array}\right\} \begin{aligned}
& \text { ink each case is } \\
& 1 ? ? \\
& \text { Ask the period }
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{142857}{711.0} \\
\frac{7}{30} \\
\frac{-28}{20} \\
\frac{14}{60} \\
\frac{-56}{40} \\
\frac{-35}{50} \\
\frac{-49}{1}
\end{array}\right)^{1} \text { repeat }
$$

Basic Fact: Every fraction can be represented as a repeating decimal.

Proof To convert $\frac{a}{b}$ to a decimal, we find $a \div b$ or $b \sqrt{a}$. At each step in the long division the remainder r is a whole \# with $0 \leq r<$ denominator.

Explain by
circling
remainders
in $\frac{1}{7}$ case.] $\left\{\begin{array}{l}\longrightarrow \text { only b possibilities for } r \\ \longrightarrow \text { repeats after at most } b \text { steps. } \\ \longrightarrow \text { once a remainder repeats, long division steps must repeat. }\end{array}\right.$

2 cases:

- If some remainder $r=0$, then it is a terminating decimal (still regard as repeating $\frac{1}{2}=.5=.50000 \ldots=.5 \overline{0}$)
- Otherwise repeats with period $\leq b-1$

Ex [If time, do calc. If not, write answer]

One can't see $\frac{1}{17}$ repeats on a calculator! this important concept can only be understood by students who know long division.

Ex $\quad \frac{1}{B}=\overline{076923}$
period is 6 (not 12)
other way: Repeating decimals \rightarrow fractions!

Ex write $\overline{17}$ as a fraction
set $x=\overline{17}$

$$
100 x=17.171717 \ldots
$$

$$
-x=-.171717 \ldots
$$

constant

$$
\begin{aligned}
99 x & =17 \\
x & =\frac{17}{99} \longrightarrow \overline{17}=\frac{17}{99}
\end{aligned}
$$

Ex $\overline{361} \quad x=\overline{361} \quad 1000 x=361.361361 \ldots$
$C_{\text {students try }}$

$$
\begin{aligned}
& -x=-.361361 \ldots \\
& 999 x=361 \longleftarrow \\
& x=\frac{361}{999} \longrightarrow \overline{361}=\frac{361}{999}
\end{aligned}
$$

[Caution: "rule" a 999 only true if there are no initial non repeating digits.]

Ex. $111 \overline{32}=\frac{1121}{9900}$

$$
\begin{aligned}
10000 x & =11323232 \ldots \\
-100 x & =-11.3232 \ldots \\
9900 x & =1121 \\
x & =\frac{1121}{9900}
\end{aligned}
$$

Ex

Fraction - Decimal theorem

(a) Every fraction can be written as a repeating decimal and vice versa.
(b) The decimal form terminates \longleftrightarrow in simplest form the denominator is a product of 2 's and 5 's only.
\rightarrow Otherwise repeats of period \leq (denominator -1)

Note: Terminating decimals have 2 repeating forms

$$
1=\left\{\begin{array}{l}
1.0000 \ldots \\
.9999 \ldots
\end{array} \quad \frac{1}{4}=.25=\left\{\begin{array}{l}
.250000 \ldots \\
.249999 \ldots
\end{array}\right.\right.
$$

[Fraction \longleftrightarrow decimal correspondence has no other ambiguity]

9.3 Rational and Real \#'s [$1 \frac{1}{2}$ days]

(1) Divisions like $5 \div 3$ did not have whole \# solutions
\rightarrow Enlarged whole \#'s to get fractions:

$$
5 \div 3=\frac{5}{3}
$$

New Property: multiplicative Inverse: $x \cdot \frac{1}{x}=1$
(2) Subtraction like 2-8 did not have a solution in whole \#'s or fractions.
\longrightarrow Enlarge whole numbers to get integers.
New Property: Additive inverse: $a+-a=0$.
Doing both gives
Def: The rationals are the set of fractions tozether with their opposites:
Ex $\frac{-3}{8}$ is a rational, but not a fraction or integer.

rationals

Rationals satisfy the complete list of Arithmetic Prop.

- Commutative Property

$$
\begin{aligned}
& a+b=b+a, a b=b a \\
& a+(b+c)=(a+b)+c \quad a(b c)=(a b) c \\
& a(b+c)=a b+a c
\end{aligned}
$$

- Associative Property
- Distributive Property
- Additive and multiplicative Identity
- Additive and multiplicative Inverses

$$
\begin{aligned}
& \underbrace{a+0=a}_{\text {defines } 0}, \underbrace{a \cdot 1=a}_{\text {defines } 1} \\
& \begin{array}{l}
a+-a=0
\end{array} \underbrace{a \cdot \frac{1}{a}=1}_{\text {integers }}
\end{aligned}
$$

New!
Closure: $a+b, a-b, a \times b, a \div b$ are all rational numbers
Note: Complete list of Arithmetic properties - Every statement, identity, rule, etc. follows from them.
used closure property throughout the course, but didn't make it explicit.

Density: How many fractions in the interval $[0,1]$?
At least as many whole \#'s: $0, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \ldots \frac{1}{n}$

Fill-in in order
more: $\quad \frac{2}{3}, \frac{3}{4}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \ldots$

(b)
(5)
(4)
(3)
(9) (2)
(7) (8)
(1)

We could continue filling in pts forever

Leads to 2 questions:
(21) Is every pt on the number line a rational \#?
[Answer Later]
(12) Given any pt on" ", are there rational numbers "near by?"

is there a rational \# near a?

Answer to Q2: yes because rational \#'s are dense, ie any interval contains at least one rational \#.

To see why,
Fix a point a and look at intervals rational in interval?

$\left[a, a+\frac{1}{2}\right]$
$\left[a, a+\frac{1}{3}\right]$
$\left[a, a+\frac{1}{4}\right]$
$\left[a, a+\frac{1}{n}\right]$
density \longrightarrow yes!

$$
a \quad a+\frac{1}{3} \quad a+\frac{1}{2}
$$

In fact, any interval contains an ∞ \# of rationals!

How to find a rational in an interval:
Ex Find a rational \# between 3.141 and 7

Real numbers
To Answer $p 1$, we need to see that every pt on the \#-line corresponds to a number. Algorithm for converting pts - to a number

called an infinite decimal expansion.

Note: Real numbers also satisfy the complete list of Arith. Prop.
Ex
(a) $13=13.000 \ldots$
$-.15=-.15000 \ldots$ $\begin{aligned} \text { repeating decimals } \Longleftrightarrow & \text { rationals! } \\ & (\pm \text { fractions) }\end{aligned}$ $\begin{aligned} \text { repeating decimals } \longleftrightarrow & \text { rationals! } \\ & \text { (} \pm \text { fractions) }\end{aligned}$
$\left.\begin{array}{rl}\frac{1}{3} & =.3333 \ldots \\ .183 & =.183183183 \ldots\end{array}\right\}$
Correspondence the

Every rational number is also a real number.
(b) $.101001000100001 \ldots$ No repetend!

By correspondence The, this is not rational. Called an irrational number because it cant be written as $\frac{a}{b}$ for any integers a, b.

Answer to Q1: NO!
The Irrational number are also dense.
Proof: Given an interval $[a, b]$ find a finite decimal c in the interval.

Ex [Hew Prob] Find it irrational between.$\overline{67}$ and.$\overline{68}$

Irrational: $.680000123456789101112 \ldots$
conclusions:

- There are 2 types of real numbers: rational and irrational.
- Both rationals and irrationals are dense (infinitely many in any interval).

HW Read $\varepsilon 9.3$ do Hw set 39

What to bring to class:
Ask students to bring PM $4 A$ and $5 A$.
9.4 Newtons method and $\sqrt{ } 2$
[SAY: we've learned: not all numbers are rational So far, looks like irrational \#'s are just theoretical since we can't even write one down
(infinitely many digits)
In fact, any building contractor will tell you the opposite - irrational \#'s occur naturally and are used frequently].
square roots - are often irrational. [SAV: To understand, weill look at $\sqrt{ } 2$ in detail.]

1. Finding $\sqrt{2}$.

Pythagorean The:

$\sqrt{2}$ is a pt on the $\#$ line \longrightarrow its a real number.
11. Find an infinite decimal expansion

Construct a square of Area $=2$
[ASK: How long is each side?]

$$
\begin{aligned}
& \sqrt{ } 2=\frac{7}{5}+e \\
& 2=\left(\frac{7}{5}+e\right)^{2}=\frac{49}{25}+2 \cdot \frac{1}{5} \cdot e+e^{2} \\
& \\
& \frac{125}{25} \approx \frac{49}{25}+\frac{14}{5} e^{\times 25}
\end{aligned}
$$

Solve for $e \longrightarrow 50 \approx 49+70 e$

$$
e \approx \frac{1}{x}
$$

Approximate $\sqrt{2} \approx \frac{7}{5}=1.4$

$$
\left(1.4^{2}=1.96<2\right)
$$

Hence a better estimate for $\sqrt{2}$

$$
\sqrt{2}=\frac{1}{5}+e \approx \frac{1}{5}+\frac{1}{70}=\frac{99}{70}=1.414
$$

A better estimate!

Algebraically: Approximate by a (instead of $\frac{1}{5}$)

$$
\sqrt{2}=a+e \Longrightarrow 2=a^{2}+2 a e+e^{2,} \text { remove }
$$

solve for $e \longrightarrow 2-a^{2} \approx 2 a e \Longrightarrow \frac{2-a^{2}}{2 a} \approx e$

$$
\Longrightarrow e \approx \frac{1}{a}-\frac{a}{2}
$$

New Approximation:

$$
a \text { new }=a+e=a+\frac{1}{a}-\frac{a}{2}=\frac{a}{2}+\frac{1}{a}
$$

Applying repeatedly gives:

Approx:

$$
\begin{aligned}
& 1 \longrightarrow \frac{1}{2}+1=\frac{3}{2}=1.5 \\
& 1.5 \longrightarrow \frac{3}{4}+\frac{2}{3}=\frac{17}{1}=1.41 \overline{6} \\
& \frac{17}{2} \longrightarrow \frac{17}{24}+\frac{12}{17}=\frac{517}{408}=1.4142156862745098039
\end{aligned}
$$

better and better approx.

(call read)

Note:
(1) $\sqrt{2}$ is not 1.414213562 followed by $\infty \#$ of random digits. (as many students believe)
(2) In each step there is always error >0. Hence it appears that $\sqrt{ } 2$ is not rational. (if $e=0$, then we would get $\sqrt{2}$ rat.)

Fact: $n=P_{1} P_{2} P_{3} \ldots P_{k}$ is a prime factorization. Then $n^{2}=\left(P_{1} \ldots P_{k}\right)\left(P_{1} \ldots P_{k}\right)$ has an even \# ($2 K^{\prime}$'s worth) of primes in its P.F.

The $\sqrt{2}$ is irrational.
Proof: suppose $\sqrt{2}$ is rational. Then

$$
\sqrt{2}=\frac{a}{b} \text { for some } a, b \text { whole \#'s. }
$$

square both sides: $2=\frac{a^{2}}{b^{2}}$

$$
\begin{aligned}
& \Longrightarrow \underbrace{a^{2}}=\underbrace{2 b^{2}} \\
& \text { even\# even\#\# } \\
& \begin{array}{l}
\text { of primes number of primes } \\
\text { in P.F. in P.F. }
\end{array}
\end{aligned}
$$

The same number can't have both an even number and odd \# of primes in its P.F. contradictions. $\sqrt{2}$ is not rational $\longrightarrow \sqrt{2}$ is irrational.

The If a whole $\# n$ is not a square $(n \neq 1,4,9,16, \ldots)$
then $\sqrt{ } n$ is irrational

How Read 9.4 Do How set 40

Radical Rules:

(1) $\sqrt[n]{a^{m}}=\left(\sqrt[n]{\left.a^{m}\right)^{m}}\right.$
(2) $\sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b}$

Proof of 2: $\sqrt[n]{a}=x, \sqrt[n]{b}=y \leftrightarrow x^{n}=a, y^{n}=b$
Then

$$
a b=x^{n} \underbrace{n}_{\text {PR }}=(x y)^{n}
$$

By def: $\quad \sqrt[n]{a b}=x y=\sqrt[n]{a} \sqrt[n]{b}$
[SAV: Radical Rule 2 follow from PR4 - can we write " \sqrt{a} as an exponent?]

Suppose we could write $\sqrt{3}=3^{\square}$ some exponent what is \qquad ?

We know $(\sqrt{3})^{2}=3^{1} \longrightarrow 3^{1}=(3 \square)^{2}=3^{2 \cdot}$
Equating we get $2 \cdot \square=1 \Longrightarrow \square=\frac{1}{2}$!
$\sqrt{3}=3^{\frac{1}{2}} \longleftarrow$ fraction exponents!

Def. Let a be any non negative real number and n a positive integer; then

$$
a^{\frac{1}{n}}=\sqrt[n]{a} \text {. }
$$

Rule 1

$$
\sqrt[n]{a^{m}}=\left(a^{m}\right)^{\frac{1}{n}}=a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=\left(\sqrt{a^{n}}\right)^{m}
$$

Rule 2

$$
\sqrt[n]{a^{n}} \sqrt[n]{b}=a^{\frac{1}{n}} b^{\frac{1}{n}}=(a b)^{\frac{1}{n}}=\sqrt[n]{a b}
$$

Ex

$$
\begin{aligned}
& 36^{3 / 2}=(\sqrt{36})^{3}=6^{3}=216 \\
& 1024^{6 / 20}=1024^{3 / 10}=\left({ }^{10} \sqrt{1024}\right)^{3}=2^{3}=8
\end{aligned}
$$

HW Read E9.4 Do HF set 39
(Don't do 1 or 9).
summary of the book
From now on, we will work with the real numbers.

The properties of equality (or what "is" is)

1) Equality of reflexive: $a=a$
2) Equality of symmetric: $a=b \rightarrow b=a$

$$
a=3 \longrightarrow 3=a
$$

3) Equality of transitive: If $a=b$ and $b=c \Longrightarrow a=c$
4) Property of substitution: Any quantity may be substituted for an equal quantity in any mathematical statement without chanzing the truth or falsity of the statement.

Equality (" $=$ ") is used to create identities.
$a=b$ means a and b stand for the same number.

The most basic identities are the arithmetic
Properties Commutative Property, Associative Property, Distributive Property, Additive Identity, etc...,

From the Arithmetic Properties we can derive the most fundamental identities (rules)

$$
\begin{aligned}
& \text { Power Rules } \\
& \text { Radical Rules } \\
& \begin{array}{ll}
\text { 1. } a^{m} a^{n}=a^{m+n} \\
\text { 2. } a^{m} \div a^{n}=a^{m-n} \\
\text { 3. }\left(a^{m}\right)^{n}=a^{m n}
\end{array}, 21 \cdot \sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m} \\
& \text { 4. } a^{m} b^{m}=(a b)^{m} \quad \begin{array}{l}
\text { written in a } \\
\text { different form }
\end{array} \\
& \text { 1. } \frac{a n}{b n}=\frac{a}{b} \\
& 2 \frac{a}{b} \pm \frac{c}{b}=\frac{a \pm c}{b} \longrightarrow \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \\
& \text { 3. } a \div b=\frac{a}{b} \\
& \text { 4. } \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \\
& 5 \cdot \frac{a}{b} \div \frac{a}{b}=a \div c \longrightarrow \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c} \\
& \text { def } \\
& \frac{a}{b_{R}}=a \cdot \frac{1}{b} \\
& \text { notation for }
\end{aligned}
$$

Integer Rules

1. $-(-a)=a$
2. $a--b=a+b$
3. $-a \times b=-(a \times b)$
4. $-a x-b=a \times b$
5. $-a \div-b=a \div b$
b. $-a \div b=a \div-b=-(a \div b)$

def

$a-b=a+(-b)$
$\underbrace{a-b=a+(-b)}_{\text {notation for }}$
order Rules

$$
\begin{aligned}
& \text { 1. } a \leq b \leftrightarrow a+c \leq b+c \\
& \text { 2. } a \leq b \Leftrightarrow \begin{cases}a c \leq b c & c<0 \\
a c \geq b c & c<0\end{cases}
\end{aligned}
$$

def
$a<b \leftrightarrow b-a$ is positive

There are a couple of other important Rules

1. $a \cdot 0=0 \quad$ for all $a \quad$ (you actually need to prove $0+0=0$ Firs .H)
2. If $a b=0$ then either $a=0$ or $b=0$
3. If $a+c=b+c$, then $a=b$
4. If $a c=b c$ and $c \neq 0$, then $a=b$

Proof of 1 (assuming $0+0=0$)

$$
\begin{aligned}
a(0) & =a \cdot 0+0 \quad \text { why? } \\
& =a \cdot 0+[a \cdot 0+-(a \cdot 0)] \\
& =[a \cdot 0+a \cdot 0]+-(a \cdot 0) \\
& =a(0+0)+-(a \cdot 0) \\
& =a \cdot 0+-(a \cdot 0) \\
& =0
\end{aligned}
$$

Ad nawseum

Proof of 2

If $a=0$ the theorem is proved. If $a \neq 0$, then $\frac{1}{a}$ exist by mult. inverse.

Either way, $a=0$ or $b=0$

Proof of 3

$$
\begin{array}{ll}
a+c=b+c & \\
(a+c)+-c=(b+c)+-c & \text { Property b of " }=" \\
a+(c+-c)=b+(c+-c) & \text { Associative Property } \\
a+0=b+0 & \text { Additive Inverse } \\
a=b & \text { Additive Identity. }
\end{array}
$$

Proof of 4

$$
\text { If } \begin{aligned}
a c=b c \Longrightarrow a c-b c & =0 \\
(a-b) c & =0
\end{aligned}
$$

by (2) either $a-b=$ or $c=0$
since $c \neq 0 \longrightarrow a-b=0$ or $a=b$

And thus, algebra begins:

- Equations, fractions, graphs
- Exponential functions
- Trigonometric functions
- Polynomials (and complex \#'s)
- Logarithmic functions
- etc.

Where does one start?
The problem: Algebra by itself is like having a powerful tod with nothing to use the tool on.

Geometry provides the problems which makes algebra useful and interesting in grade school.
Onward to Geometry!

[^0]: ${ }^{1}$ ALWAYS BRING THE MAIN TEXT and CLASS STUDENT BOOKS 3a-6a AND 5 WKBK, YOUR MATH NOTEBOOK (LOOSELEAF PAPER) AND HOMEWORK.

